{"title":"A review on structure and manufacturing optimization of LDMOS devices","authors":"Yixian Song , Hao Cai , Dawei Gao , Kai Xu","doi":"10.1016/j.mee.2025.112377","DOIUrl":null,"url":null,"abstract":"<div><div>Bipolar-CMOS-DMOS (BCD) is the mainstream manufacturing technology for power management integrated circuits (PMIC), with laterally diffused metal-oxide semiconductor (LDMOS) devices serving as the core component. This review provides a comprehensive overview of LDMOS device structures, manufacturing processes, and applications. It discusses the fundamental structure and working principles, encompassing the manufacturing processes, critical technological features, and industry-specific module descriptions. Furthermore, it introduces device optimization strategies</div><div>tailored to various application scenarios. By integrating insights from both industry and academia, this review highlights emerging trends and challenges in the field, offering a forward-looking perspective on LDMOS advancements and future research directions.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"300 ","pages":"Article 112377"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931725000668","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Bipolar-CMOS-DMOS (BCD) is the mainstream manufacturing technology for power management integrated circuits (PMIC), with laterally diffused metal-oxide semiconductor (LDMOS) devices serving as the core component. This review provides a comprehensive overview of LDMOS device structures, manufacturing processes, and applications. It discusses the fundamental structure and working principles, encompassing the manufacturing processes, critical technological features, and industry-specific module descriptions. Furthermore, it introduces device optimization strategies
tailored to various application scenarios. By integrating insights from both industry and academia, this review highlights emerging trends and challenges in the field, offering a forward-looking perspective on LDMOS advancements and future research directions.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.