On the complexity of Cayley graphs on a dihedral group

IF 0.7 3区 数学 Q2 MATHEMATICS
Bobo Hua , A.D. Mednykh , I.A. Mednykh , Lili Wang
{"title":"On the complexity of Cayley graphs on a dihedral group","authors":"Bobo Hua ,&nbsp;A.D. Mednykh ,&nbsp;I.A. Mednykh ,&nbsp;Lili Wang","doi":"10.1016/j.disc.2025.114662","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the complexity of an infinite family of Cayley graphs<span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>C</mi><mi>a</mi><mi>y</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>±</mo><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>±</mo><msub><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>±</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></msup><mo>,</mo><mi>a</mi><msup><mrow><mi>b</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo><mi>a</mi><msup><mrow><mi>b</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><mi>a</mi><msup><mrow><mi>b</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></msup><mo>)</mo></math></span></span></span> on the dihedral group <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>〈</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>|</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mo>(</mo><mi>a</mi><mspace></mspace><mi>b</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>〉</mo></math></span> of order 2<em>n</em>.</div><div>We obtain a closed formula for the number <span><math><mi>τ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of spanning trees in <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in terms of Chebyshev polynomials, investigate some arithmetical properties of this function, and find its asymptotics as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, we show that the generating function <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>τ</mi><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a rational function with integer coefficients.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114662"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002705","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the complexity of an infinite family of Cayley graphsDn=Cay(Dn,b±β1,b±β2,,b±βs,abγ1,abγ2,,abγt) on the dihedral group Dn=a,b|a2=1,bn=1,(ab)2=1 of order 2n.
We obtain a closed formula for the number τ(n) of spanning trees in Dn in terms of Chebyshev polynomials, investigate some arithmetical properties of this function, and find its asymptotics as n. Moreover, we show that the generating function F(x)=n=1τ(n)xn is a rational function with integer coefficients.
二面体群上Cayley图的复杂性
本文研究了2n阶二面体群Dn= < a,b|a2=1,bn=1,(ab)2=1 >上无限族Cayley图Dn=Cay(Dn,b±β1,b±β2,…,b±βs,abγ1,abγ2,…,abγt)的复杂性。我们用Chebyshev多项式得到了Dn中生成树数τ(n)的一个封闭公式,研究了该函数的一些算术性质,并得到了它在n→∞时的渐近性。进一步证明了生成函数F(x)=∑n=1∞τ(n)xn是一个系数为整数的有理函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信