Bobo Hua , A.D. Mednykh , I.A. Mednykh , Lili Wang
{"title":"On the complexity of Cayley graphs on a dihedral group","authors":"Bobo Hua , A.D. Mednykh , I.A. Mednykh , Lili Wang","doi":"10.1016/j.disc.2025.114662","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the complexity of an infinite family of Cayley graphs<span><span><span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>C</mi><mi>a</mi><mi>y</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>±</mo><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>±</mo><msub><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>±</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></msup><mo>,</mo><mi>a</mi><msup><mrow><mi>b</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo><mi>a</mi><msup><mrow><mi>b</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><mi>a</mi><msup><mrow><mi>b</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></msup><mo>)</mo></math></span></span></span> on the dihedral group <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>〈</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>|</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mo>(</mo><mi>a</mi><mspace></mspace><mi>b</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>〉</mo></math></span> of order 2<em>n</em>.</div><div>We obtain a closed formula for the number <span><math><mi>τ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> of spanning trees in <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in terms of Chebyshev polynomials, investigate some arithmetical properties of this function, and find its asymptotics as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, we show that the generating function <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>τ</mi><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a rational function with integer coefficients.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 1","pages":"Article 114662"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002705","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the complexity of an infinite family of Cayley graphs on the dihedral group of order 2n.
We obtain a closed formula for the number of spanning trees in in terms of Chebyshev polynomials, investigate some arithmetical properties of this function, and find its asymptotics as . Moreover, we show that the generating function is a rational function with integer coefficients.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.