{"title":"CADCO: An Adaptive Dynamic Cloud-fog Computing Offloading Method for complex dependency tasks of IoT","authors":"Zhuangzhi Tian , Xiaolong Xu","doi":"10.1016/j.simpat.2025.103168","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of the Internet of Things (IoT) and cloud-fog computing, efficient offloading of complex dependency tasks has become a key challenge for improving system performance, especially for real-time IoT applications. Traditional methods are inefficient in handling dynamic environments and long-range dependencies, while existing deep reinforcement learning approaches face issues such as rigid resource allocation and Q-value overestimation. To address these problems, we propose an Adaptive Dynamic Cloud-fog Computing Offloading Method for complex dependency tasks (CADCO). The method accurately models task dependencies using the multi-head attention mechanism of Transformer, optimizes computational and memory resource allocation through Hybrid Model Parallelism (HMP) technology, and designs a dynamic offloading strategy based on an improved Double Deep Q-Network (DDQN). A freshness factor is introduced to optimize the experience replay mechanism, enhancing the stability of the strategy. Experimental results show that CADCO demonstrates significant advantages in multi-user, multi-task offloading scenarios, optimizing task scheduling, improving resource utilization, and significantly enhancing QoS while reducing task latency and energy consumption. These results validate the practical application value of CADCO in complex task dependency environments, providing solid theoretical and experimental support for intelligent computing offloading optimization.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"144 ","pages":"Article 103168"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25001030","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of the Internet of Things (IoT) and cloud-fog computing, efficient offloading of complex dependency tasks has become a key challenge for improving system performance, especially for real-time IoT applications. Traditional methods are inefficient in handling dynamic environments and long-range dependencies, while existing deep reinforcement learning approaches face issues such as rigid resource allocation and Q-value overestimation. To address these problems, we propose an Adaptive Dynamic Cloud-fog Computing Offloading Method for complex dependency tasks (CADCO). The method accurately models task dependencies using the multi-head attention mechanism of Transformer, optimizes computational and memory resource allocation through Hybrid Model Parallelism (HMP) technology, and designs a dynamic offloading strategy based on an improved Double Deep Q-Network (DDQN). A freshness factor is introduced to optimize the experience replay mechanism, enhancing the stability of the strategy. Experimental results show that CADCO demonstrates significant advantages in multi-user, multi-task offloading scenarios, optimizing task scheduling, improving resource utilization, and significantly enhancing QoS while reducing task latency and energy consumption. These results validate the practical application value of CADCO in complex task dependency environments, providing solid theoretical and experimental support for intelligent computing offloading optimization.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.