Neighborhoods, connectivity, and diameter of the nilpotent graph of a finite group

IF 0.8 2区 数学 Q2 MATHEMATICS
Costantino Delizia , Michele Gaeta , Mark L. Lewis , Carmine Monetta
{"title":"Neighborhoods, connectivity, and diameter of the nilpotent graph of a finite group","authors":"Costantino Delizia ,&nbsp;Michele Gaeta ,&nbsp;Mark L. Lewis ,&nbsp;Carmine Monetta","doi":"10.1016/j.jalgebra.2025.06.024","DOIUrl":null,"url":null,"abstract":"<div><div>The nilpotent graph of a group <em>G</em> is the simple and undirected graph whose vertices are the elements of <em>G</em> and two distinct vertices are adjacent if they generate a nilpotent subgroup of <em>G</em>. Here we discuss some topological properties of the nilpotent graph of a finite group <em>G</em>. Indeed, we characterize finite solvable groups whose closed neighborhoods are nilpotent subgroups. Moreover, we study the connectivity of the graph <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> obtained removing all universal vertices from the nilpotent graph of <em>G</em>. Some upper bounds to the diameter of <span><math><mi>Γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are provided when <em>G</em> belongs to some classes of groups.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"682 ","pages":"Pages 771-786"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003722","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The nilpotent graph of a group G is the simple and undirected graph whose vertices are the elements of G and two distinct vertices are adjacent if they generate a nilpotent subgroup of G. Here we discuss some topological properties of the nilpotent graph of a finite group G. Indeed, we characterize finite solvable groups whose closed neighborhoods are nilpotent subgroups. Moreover, we study the connectivity of the graph Γ(G) obtained removing all universal vertices from the nilpotent graph of G. Some upper bounds to the diameter of Γ(G) are provided when G belongs to some classes of groups.
有限群的幂零图的邻域、连通性和直径
群G的幂零图是简单无向图,其顶点是G的元素,并且两个不同的顶点相邻,如果它们产生G的幂零子群。本文讨论了有限群G的幂零图的一些拓扑性质,并刻画了闭邻为幂零子群的有限可解群。此外,我们研究了从G的幂零图中去掉所有泛顶点所得到的图Γ(G)的连通性。当G属于某些类群时,给出了Γ(G)直径的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信