Marco Emporio , Amirpouya Ghasemaghaei , Joseph J. Laviola Jr. , Andrea Giachetti
{"title":"Continuous hand gesture recognition: Benchmarks and methods","authors":"Marco Emporio , Amirpouya Ghasemaghaei , Joseph J. Laviola Jr. , Andrea Giachetti","doi":"10.1016/j.cviu.2025.104435","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we review the existing benchmarks for continuous gesture recognition, e.g., the online analysis of hand movements over time to detect and recognize meaningful gestures from a specific dictionary. Focusing on human–computer interaction scenarios, we classify these benchmarks based on input data types, gesture dictionaries, and evaluation metrics. Specific metrics for the continuous recognition task are crucial for understanding how effectively gestures are spotted in real time within input streams. We also discuss the most effective detection and classification methods proposed for these benchmarks. Our findings indicate that the number and quality of publicly available datasets remain limited, and evaluation methodologies for continuous recognition are not yet standardized. These issues highlight the need for new benchmarks that reflect real-world usage conditions and can support the development of best practices in gesture-based interface design.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"259 ","pages":"Article 104435"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225001584","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we review the existing benchmarks for continuous gesture recognition, e.g., the online analysis of hand movements over time to detect and recognize meaningful gestures from a specific dictionary. Focusing on human–computer interaction scenarios, we classify these benchmarks based on input data types, gesture dictionaries, and evaluation metrics. Specific metrics for the continuous recognition task are crucial for understanding how effectively gestures are spotted in real time within input streams. We also discuss the most effective detection and classification methods proposed for these benchmarks. Our findings indicate that the number and quality of publicly available datasets remain limited, and evaluation methodologies for continuous recognition are not yet standardized. These issues highlight the need for new benchmarks that reflect real-world usage conditions and can support the development of best practices in gesture-based interface design.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems