Ying Luo , Weijie Yu , Jiaxin Lu , Yanyan Chen , Dong Ngoduy
{"title":"A dynamic and stochastic perspective on time headway in traffic oscillations and its implications for traffic safety","authors":"Ying Luo , Weijie Yu , Jiaxin Lu , Yanyan Chen , Dong Ngoduy","doi":"10.1016/j.aap.2025.108146","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic oscillations refer to the alternating patterns of vehicle deceleration and acceleration in congested conditions, which usually create significant safety concerns on freeways. Thus, it is imperative to understand the mechanisms of traffic oscillations and their underlying safety implications. This paper presents a novel approach to exploring the combined effects of dynamic time headway (DTH) and stochasticity on traffic oscillations during car-following. Using high-precision trajectory data, we demonstrate a strong correlation between DTH and stochasticity strength with the power functions of speed. We then extend the car-following model framework that considers both the dynamic characteristics and stochasticity of time headway to investigate the mechanisms of traffic oscillation. The model calibration and validation results demonstrate that our extended model outperforms the original model in terms of trajectory fitting accuracy, successfully replicating the asymmetric driving behavior and the concave growth pattern of speed standard deviation. Building upon this novel perspective, linear stability and safety evaluation are systematically conducted to understand the comprehensive influence of DTH and stochasticity. Our theoretical and numerical experiments show that DTH significantly increases the range of string instability in traffic flow, particularly at low-speed regimes. The influence of the stochasticity on the marginal stability of traffic flow shows a pattern of increasing followed by decreasing tendencies. Also, the combined effect of drivers’ DTH characteristics and stochasticity could expand the rear-end collision risks at low-speed regimes, showing a backward diffusion effect. Our findings further establish the interconnection of traffic oscillations with traffic stability and safety concerns.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"220 ","pages":"Article 108146"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457525002325","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic oscillations refer to the alternating patterns of vehicle deceleration and acceleration in congested conditions, which usually create significant safety concerns on freeways. Thus, it is imperative to understand the mechanisms of traffic oscillations and their underlying safety implications. This paper presents a novel approach to exploring the combined effects of dynamic time headway (DTH) and stochasticity on traffic oscillations during car-following. Using high-precision trajectory data, we demonstrate a strong correlation between DTH and stochasticity strength with the power functions of speed. We then extend the car-following model framework that considers both the dynamic characteristics and stochasticity of time headway to investigate the mechanisms of traffic oscillation. The model calibration and validation results demonstrate that our extended model outperforms the original model in terms of trajectory fitting accuracy, successfully replicating the asymmetric driving behavior and the concave growth pattern of speed standard deviation. Building upon this novel perspective, linear stability and safety evaluation are systematically conducted to understand the comprehensive influence of DTH and stochasticity. Our theoretical and numerical experiments show that DTH significantly increases the range of string instability in traffic flow, particularly at low-speed regimes. The influence of the stochasticity on the marginal stability of traffic flow shows a pattern of increasing followed by decreasing tendencies. Also, the combined effect of drivers’ DTH characteristics and stochasticity could expand the rear-end collision risks at low-speed regimes, showing a backward diffusion effect. Our findings further establish the interconnection of traffic oscillations with traffic stability and safety concerns.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.