All-optical Fourier neural network using partially coherent light

Chip Pub Date : 2025-03-16 DOI:10.1016/j.chip.2025.100140
Jianwei Qin , Yanbing Liu , Yan Liu , Xun Liu , Wei Li , Fangwei Ye
{"title":"All-optical Fourier neural network using partially coherent light","authors":"Jianwei Qin ,&nbsp;Yanbing Liu ,&nbsp;Yan Liu ,&nbsp;Xun Liu ,&nbsp;Wei Li ,&nbsp;Fangwei Ye","doi":"10.1016/j.chip.2025.100140","DOIUrl":null,"url":null,"abstract":"<div><div>Optical neural networks present distinct advantages over traditional electrical counterparts, such as accelerated data processing and reduced energy consumption. While coherent light is conventionally used in optical neural networks, our study proposed harnessing spatially incoherent light in all-optical Fourier neural networks. Contrary to natural predictions of declining target recognition accuracy with increased incoherence, our experimental results demonstrated a surprising outcome: improved accuracy with incoherent light. We attribute this enhancement to spatially incoherent light's ability to alleviate experimental errors like diffraction rings and laser speckle. Our experiments introduced controllable spatial incoherence by passing monochromatic light through a spatial light modulator featuring a dynamically changing random phase array. These findings underscore partially coherent light's potential to optimize optical neural networks, delivering dependable and efficient solutions for applications demanding consistent accuracy and robustness across diverse conditions, including on-chip optical computing, photonic interconnects, and reconfigurable optical processors.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 3","pages":"Article 100140"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472325000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical neural networks present distinct advantages over traditional electrical counterparts, such as accelerated data processing and reduced energy consumption. While coherent light is conventionally used in optical neural networks, our study proposed harnessing spatially incoherent light in all-optical Fourier neural networks. Contrary to natural predictions of declining target recognition accuracy with increased incoherence, our experimental results demonstrated a surprising outcome: improved accuracy with incoherent light. We attribute this enhancement to spatially incoherent light's ability to alleviate experimental errors like diffraction rings and laser speckle. Our experiments introduced controllable spatial incoherence by passing monochromatic light through a spatial light modulator featuring a dynamically changing random phase array. These findings underscore partially coherent light's potential to optimize optical neural networks, delivering dependable and efficient solutions for applications demanding consistent accuracy and robustness across diverse conditions, including on-chip optical computing, photonic interconnects, and reconfigurable optical processors.
采用部分相干光的全光傅立叶神经网络
与传统的电子网络相比,光神经网络具有明显的优势,例如加速数据处理和降低能耗。虽然相干光通常用于光学神经网络,但我们的研究提出在全光学傅里叶神经网络中利用空间非相干光。与非相干性增加导致目标识别精度下降的自然预测相反,我们的实验结果显示了一个令人惊讶的结果:非相干光提高了精度。我们将这种增强归因于空间非相干光减轻衍射环和激光散斑等实验误差的能力。我们的实验通过将单色光通过具有动态变化随机相阵的空间光调制器来引入可控的空间非相干性。这些发现强调了部分相干光优化光学神经网络的潜力,为要求在不同条件下保持一致的精度和鲁棒性的应用提供可靠和高效的解决方案,包括片上光学计算、光子互连和可重构光学处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信