Alfredo Jose Florez Ariza, Nicholas Z. Lue, Patricia Grob, Benjamin Kaeser, Jie Fang, Susanne A. Kassube, Eva Nogales
{"title":"Structural insights into transcriptional regulation by the helicase RECQL5","authors":"Alfredo Jose Florez Ariza, Nicholas Z. Lue, Patricia Grob, Benjamin Kaeser, Jie Fang, Susanne A. Kassube, Eva Nogales","doi":"10.1038/s41594-025-01611-8","DOIUrl":null,"url":null,"abstract":"Transcription poses a major challenge for genome stability. The RECQL5 helicase helps safeguard genome integrity and is the only member of the human RecQ helicase family that directly binds to RNA polymerase II (Pol II) and affects its progression. While RECQL5 mitigates transcription stress in cells, the molecular mechanism underlying this phenomenon is unclear. Here, we use cryo-electron microscopy to determine the structures of stalled human Pol II elongation complexes (ECs) bound to RECQL5. Our structures reveal the molecular interactions stabilizing RECQL5 binding to the Pol II EC and highlight its role as a transcriptional roadblock. Additionally, we find that, in its nucleotide-free state, RECQL5 twists the downstream DNA in the EC and, upon nucleotide binding, undergoes a conformational change that allosterically induces Pol II toward a post-translocation state. We propose that this mechanism may help restart Pol II elongation and, therefore, contribute to reducing transcription stress. Florez Ariza and Lue et al. use cryo-electron microscopy to investigate how the RECQL5 helicase regulates transcription. Their structural findings suggest that RECQL5 can modulate RNA polymerase II’s translocation state, potentially restarting stalled transcription.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 9","pages":"1721-1730"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41594-025-01611-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-025-01611-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription poses a major challenge for genome stability. The RECQL5 helicase helps safeguard genome integrity and is the only member of the human RecQ helicase family that directly binds to RNA polymerase II (Pol II) and affects its progression. While RECQL5 mitigates transcription stress in cells, the molecular mechanism underlying this phenomenon is unclear. Here, we use cryo-electron microscopy to determine the structures of stalled human Pol II elongation complexes (ECs) bound to RECQL5. Our structures reveal the molecular interactions stabilizing RECQL5 binding to the Pol II EC and highlight its role as a transcriptional roadblock. Additionally, we find that, in its nucleotide-free state, RECQL5 twists the downstream DNA in the EC and, upon nucleotide binding, undergoes a conformational change that allosterically induces Pol II toward a post-translocation state. We propose that this mechanism may help restart Pol II elongation and, therefore, contribute to reducing transcription stress. Florez Ariza and Lue et al. use cryo-electron microscopy to investigate how the RECQL5 helicase regulates transcription. Their structural findings suggest that RECQL5 can modulate RNA polymerase II’s translocation state, potentially restarting stalled transcription.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.