Jian Lin, Qiaoya Li, Xin Liu, Jiao Zhan, Li Yuan, Mingkun Yang, Feng Ge
{"title":"The role of CddA and cGNAT2 in crotonylation of proteins in cyanobacteria","authors":"Jian Lin, Qiaoya Li, Xin Liu, Jiao Zhan, Li Yuan, Mingkun Yang, Feng Ge","doi":"10.1111/nph.70310","DOIUrl":null,"url":null,"abstract":"Summary<jats:list list-type=\"bullet\"> <jats:list-item>Lysine crotonylation (Kcr) is a newly identified posttranslational modification that plays an important role in diverse biological processes; however, its distribution, function, and regulation in photosynthetic organisms remain largely unknown. Cyanobacteria are the most ancient prokaryotes capable of oxygenic photosynthesis and play a vital role in global carbon and nitrogen cycles.</jats:list-item> <jats:list-item>We examined all predicted Kcr regulatory enzymes in the model cyanobacterium <jats:italic>Synechococcus</jats:italic> sp. PCC 7002 (Syn7002) using total protein Kcr modification levels and enzymatic activity assays. We then used a label‐free quantitative (LFQ) proteomic approach following enrichment for crotonylated peptides to identify the endogenous substrates of these Kcr regulatory enzymes.</jats:list-item> <jats:list-item>We found that cGNAT2 functions as a lysine crotonyltransferase, whereas CddA acts as a decrotonylase. Using LFQ crotonylome analysis, we identified a total of 536 endogenous Kcr sites catalyzed by cGNAT2 and 360 candidate sites targeted by CddA, with the associated proteins predominantly involved in metabolic processes and photosynthesis. Furthermore, we validated that cGNAT2 and CddA regulate the Kcr level of the Photosystem I subunit II (PsaD).</jats:list-item> <jats:list-item>cGNAT2 and CddA may influence the structure of PsaD by modulating its Kcr status or by cumulative modification effects, thereby affecting cell growth and the efficiency of photosynthetic electron transport.</jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"10 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70310","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryLysine crotonylation (Kcr) is a newly identified posttranslational modification that plays an important role in diverse biological processes; however, its distribution, function, and regulation in photosynthetic organisms remain largely unknown. Cyanobacteria are the most ancient prokaryotes capable of oxygenic photosynthesis and play a vital role in global carbon and nitrogen cycles.We examined all predicted Kcr regulatory enzymes in the model cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) using total protein Kcr modification levels and enzymatic activity assays. We then used a label‐free quantitative (LFQ) proteomic approach following enrichment for crotonylated peptides to identify the endogenous substrates of these Kcr regulatory enzymes.We found that cGNAT2 functions as a lysine crotonyltransferase, whereas CddA acts as a decrotonylase. Using LFQ crotonylome analysis, we identified a total of 536 endogenous Kcr sites catalyzed by cGNAT2 and 360 candidate sites targeted by CddA, with the associated proteins predominantly involved in metabolic processes and photosynthesis. Furthermore, we validated that cGNAT2 and CddA regulate the Kcr level of the Photosystem I subunit II (PsaD).cGNAT2 and CddA may influence the structure of PsaD by modulating its Kcr status or by cumulative modification effects, thereby affecting cell growth and the efficiency of photosynthetic electron transport.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.