Microhydration Dynamics in Molecular Photoswitches: Equilibrium State Reconfiguration in Imine-Based Architectures

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nuno M. Campos, Rita J. C. Roque, Pablo Pinacho, Corina H. Pollok, Christian Merten, Pedro S. P. Silva, Manuela R. Silva, Melanie Schnell, Sérgio R. Domingos
{"title":"Microhydration Dynamics in Molecular Photoswitches: Equilibrium State Reconfiguration in Imine-Based Architectures","authors":"Nuno M. Campos,&nbsp;Rita J. C. Roque,&nbsp;Pablo Pinacho,&nbsp;Corina H. Pollok,&nbsp;Christian Merten,&nbsp;Pedro S. P. Silva,&nbsp;Manuela R. Silva,&nbsp;Melanie Schnell,&nbsp;Sérgio R. Domingos","doi":"10.1002/anie.202506531","DOIUrl":null,"url":null,"abstract":"<p>The functional performance of a molecular photoswitch relies strongly on its ability to undergo structural changes in solution. In this context, microsolvation studies in the gas phase provide access to the conformational panorama of these systems in a size-controlled hydrated environment. Here, we exploit this gas-phase vantage point alongside quantum-chemistry calculations to study the structural properties and microhydration dynamics of camphorquinone imine, a chiral molecule holding the functionality to engage in a motor-like function upon light activation. Using molecular rotational resonance spectroscopy with supersonic jets, we detect and analyze the first- and second-order water complexes of the chiral imine. Our findings reveal that initial hydration steps significantly impact the equilibrium between open (E) and closed (Z) forms, culminating in a reversal of relative stability for the switch states. Despite being captured at rotational temperatures near 1 K, we find that water molecules exhibit notable mobility due to the lack of prominent stabilizing secondary interactions. Additionally, the assignment of a key higher-energy closed (Z) water complex provides insights into the energy required for switching between (E) and (Z) states during collisional cooling. We discuss these effects and rationalize them in terms of molecular forces and internal dynamics governing early solvation.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 31","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202506531","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202506531","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The functional performance of a molecular photoswitch relies strongly on its ability to undergo structural changes in solution. In this context, microsolvation studies in the gas phase provide access to the conformational panorama of these systems in a size-controlled hydrated environment. Here, we exploit this gas-phase vantage point alongside quantum-chemistry calculations to study the structural properties and microhydration dynamics of camphorquinone imine, a chiral molecule holding the functionality to engage in a motor-like function upon light activation. Using molecular rotational resonance spectroscopy with supersonic jets, we detect and analyze the first- and second-order water complexes of the chiral imine. Our findings reveal that initial hydration steps significantly impact the equilibrium between open (E) and closed (Z) forms, culminating in a reversal of relative stability for the switch states. Despite being captured at rotational temperatures near 1 K, we find that water molecules exhibit notable mobility due to the lack of prominent stabilizing secondary interactions. Additionally, the assignment of a key higher-energy closed (Z) water complex provides insights into the energy required for switching between (E) and (Z) states during collisional cooling. We discuss these effects and rationalize them in terms of molecular forces and internal dynamics governing early solvation.

Abstract Image

分子光开关中的微水合动力学:亚胺基结构中的平衡态重构。
分子光开关的功能性能在很大程度上取决于其在溶液中经历结构变化的能力。在这种情况下,气相的微溶剂化研究为这些系统在尺寸控制的水合环境中的构象全景提供了途径。在这里,我们利用这种气相优势以及量子化学计算来研究脑啡醌亚胺的结构特性和微水化动力学,脑啡醌亚胺是一种手性分子,在光激活时具有参与类似马达的功能。利用超音速射流分子旋转共振光谱技术,对手性亚胺的一、二级水配合物进行了检测和分析。我们的研究结果表明,初始水化步骤显著影响开(E)和闭(Z)形式之间的平衡,最终导致开关状态相对稳定性的逆转。尽管在接近1k的旋转温度下被捕获,但我们发现由于缺乏显著的稳定次级相互作用,水分子表现出显著的流动性。此外,一个关键的高能封闭(Z)水配合物的分配提供了在碰撞冷却过程中(E)和(Z)状态之间切换所需的能量的见解。我们讨论了这些影响,并从分子力和控制早期溶剂化的内部动力学的角度对它们进行了合理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信