Enhancing melatonin biosynthesis in crops through synthetic genetic circuits: A strategy for nutritional fortification in soybean and stress resistance in cotton.
IF 10.5 1区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Enhancing melatonin biosynthesis in crops through synthetic genetic circuits: A strategy for nutritional fortification in soybean and stress resistance in cotton.","authors":"Yue Shi,Zegang Han,Wanying Zhang,Lu He,Zhuolin Shi,Xiaowei Ma,Ji Zhou,Zhanfeng Si,Yan Hu,Tianzhen Zhang","doi":"10.1111/pbi.70253","DOIUrl":null,"url":null,"abstract":"Melatonin has gained considerable prominence in the treatment of insomnia that significantly impacts one-third of the global population. The production of melatonin remains challenging due to limitations in current methods. Thus, there is an urgent need for developing more efficient and innovative production techniques. Here, we demonstrated the potential of crop seeds as a platform for melatonin synthesis by engineering multiple BUFFER genetic circuits using synthesized transcriptional regulators, which enhance expression precision, orthogonality and thresholds. Biofortified soybeans exhibited a 31-fold increase in melatonin content compared to standard Williams 82, without detrimental impact on yield. Protein content was elevated, oil content reduced and the soybeans were suitable for post-harvest processing. Furthermore, plants enriched in endogenous melatonin exhibited stronger resilience to adversity, evidenced by improved salinity tolerance in soybean seeds and increased resistance to Verticillium dahliae in cotton. Our research paves the way for the synthesis of target compounds in staple crops using synthetic genetic circuits, facilitating the development of novel biofortified crops to increase nutritional availability and environmental adaptability in the upcoming new era of agriculture.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"39 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70253","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Melatonin has gained considerable prominence in the treatment of insomnia that significantly impacts one-third of the global population. The production of melatonin remains challenging due to limitations in current methods. Thus, there is an urgent need for developing more efficient and innovative production techniques. Here, we demonstrated the potential of crop seeds as a platform for melatonin synthesis by engineering multiple BUFFER genetic circuits using synthesized transcriptional regulators, which enhance expression precision, orthogonality and thresholds. Biofortified soybeans exhibited a 31-fold increase in melatonin content compared to standard Williams 82, without detrimental impact on yield. Protein content was elevated, oil content reduced and the soybeans were suitable for post-harvest processing. Furthermore, plants enriched in endogenous melatonin exhibited stronger resilience to adversity, evidenced by improved salinity tolerance in soybean seeds and increased resistance to Verticillium dahliae in cotton. Our research paves the way for the synthesis of target compounds in staple crops using synthetic genetic circuits, facilitating the development of novel biofortified crops to increase nutritional availability and environmental adaptability in the upcoming new era of agriculture.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.