Controlling Nanonet Morphology via Residue‐Specific Modulation of β‐Hairpin Peptide for Enhanced Bacterial Trapping

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-07 DOI:10.1002/smll.202505823
Wei Meng Chen, Dhanya Mahalakshmi Murali, Nhan Dai Thien Tram, Peiyan Yu, Daniel Tianyu Wang, Pui Lai Rachel Ee
{"title":"Controlling Nanonet Morphology via Residue‐Specific Modulation of β‐Hairpin Peptide for Enhanced Bacterial Trapping","authors":"Wei Meng Chen, Dhanya Mahalakshmi Murali, Nhan Dai Thien Tram, Peiyan Yu, Daniel Tianyu Wang, Pui Lai Rachel Ee","doi":"10.1002/smll.202505823","DOIUrl":null,"url":null,"abstract":"Precise control over peptide nanonet architecture is instrumental in advancing the development of antibacterial nanonets. Here, a novel design strategy is presented to control bacteria nanonet morphology through rational modification of the β‐hairpin side strands, leveraging the unique chemical properties of amino acid side chains. By fine‐tuning both the termini and aromaticity of the hydrophobic residue, the W‐W<jats:sub>13</jats:sub> peptide is engineered to form increased nanofibers interweaving on bacterial surfaces, forming a tightly interwoven nanonet that effectively traps and kills both <jats:italic>E. coli</jats:italic> and <jats:italic>S. aureus</jats:italic>. In contrast, asymmetric glutamic acid substitutions on the cationic residues of the E‐E<jats:sub>13</jats:sub><jats:sup>ASYM</jats:sup> peptide redirect the nanofibers to self‐interweave, forming extensive nanonets with minimal bacterial coverage and no antibacterial activity. Using these nanonets with distinct morphologies and function, it is demonstrated that the formation of tightly interwoven nanonets on bacterial surfaces significantly reduces the spread of motile <jats:italic>E. coli</jats:italic> and <jats:italic>P. aeruginosa</jats:italic>, outperforming both loosely trapping nanonets and conventional potent antibiotics. The findings pave the way for the development of novel peptide‐based nanonets, offering a promising strategy to target bacterial motility and prevent spreading of bacteria.","PeriodicalId":228,"journal":{"name":"Small","volume":"8 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202505823","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise control over peptide nanonet architecture is instrumental in advancing the development of antibacterial nanonets. Here, a novel design strategy is presented to control bacteria nanonet morphology through rational modification of the β‐hairpin side strands, leveraging the unique chemical properties of amino acid side chains. By fine‐tuning both the termini and aromaticity of the hydrophobic residue, the W‐W13 peptide is engineered to form increased nanofibers interweaving on bacterial surfaces, forming a tightly interwoven nanonet that effectively traps and kills both E. coli and S. aureus. In contrast, asymmetric glutamic acid substitutions on the cationic residues of the E‐E13ASYM peptide redirect the nanofibers to self‐interweave, forming extensive nanonets with minimal bacterial coverage and no antibacterial activity. Using these nanonets with distinct morphologies and function, it is demonstrated that the formation of tightly interwoven nanonets on bacterial surfaces significantly reduces the spread of motile E. coli and P. aeruginosa, outperforming both loosely trapping nanonets and conventional potent antibiotics. The findings pave the way for the development of novel peptide‐based nanonets, offering a promising strategy to target bacterial motility and prevent spreading of bacteria.
通过β发夹肽残基特异性调节控制纳米形态以增强细菌捕获
对肽纳米网结构的精确控制有助于抗菌纳米网的发展。本文提出了一种新的设计策略,利用氨基酸侧链独特的化学性质,通过合理修饰β -发夹侧链来控制细菌纳米形态。通过微调疏水残基的末端和芳香性,W - W13肽被设计成在细菌表面形成更多的纳米纤维交织,形成一个紧密交织的纳米网络,有效地捕获和杀死大肠杆菌和金黄色葡萄球菌。相反,在E - E13ASYM肽的阳离子残基上的不对称谷氨酸取代使纳米纤维重新定向到自交织,形成广泛的纳米纤维,细菌覆盖最小,没有抗菌活性。利用这些具有不同形态和功能的纳米网,研究人员证明,在细菌表面形成紧密交织的纳米网可以显著减少活动大肠杆菌和铜绿假单胞菌的传播,优于松散捕获纳米网和传统的强效抗生素。这一发现为开发新型基于肽的纳米网络铺平了道路,提供了一种有前途的策略来靶向细菌的运动和防止细菌的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信