Antimicrobial potential of floral extract-decorated nanoparticles against food-borne pathogens.

IF 4.5 0 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nizar Fathima Mohamed Yunus Saleem, Ranjani Soundhararajan, Hemalatha Srinivasan
{"title":"Antimicrobial potential of floral extract-decorated nanoparticles against food-borne pathogens.","authors":"Nizar Fathima Mohamed Yunus Saleem, Ranjani Soundhararajan, Hemalatha Srinivasan","doi":"10.1186/s11671-025-04292-w","DOIUrl":null,"url":null,"abstract":"<p><p>Green nanoparticles are economically beneficial and do not harm the environment as they are eco-friendly when compared with chemically synthesized silver nanoparticles. Contamination of food and food products with micro-organisms can cause food spoilage and food-borne diseases. This research mainly focuses on United Nations Sustainable Development Goals (SDGs 2, 3, 6, 9, 12), particularly in the areas of health, food safety, and sustainable innovation. The aim of the study was to synthesize Moringa oleifera flower mediated silver nanoparticles to control the growth and biofilm formation in isolated food - borne pathogens. The fresh extract obtained from the flowers of Moringa oleifera has been utilized for the synthesis of silver nanoparticles (Mo-AgNPs). The Mo-AgNPs were characterized by using various analytical techniques. In silico analysis has been carried out to know the binding potential of phytocompounds of Moringa oleifera with the virulent proteins of bacterial strains. The toxicity effect of Mo-AgNPs was evaluated by using seed germination studies with the seeds of Vigna radiata and evaluated the toxicity effect in Artemia nauplii based on its mortality rate. The novelty of the work is to evaluate the antibacterial efficacy of the synthesized Mo-AgNPs, antimicrobial assays including agar well diffusion, Minimum Inhibition Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Biofilm formation assay were performed in the bacterial strains isolated from spoiled food. Mo-AgNPs confirmed its nanosize by depicting the particle size as 12.73 nm with 0.115 mV. Mo-AgNPs showed potential benefit for plant growth and exhibited toxicity to Artemia nauplii at higher concentration. The maximum concentrations of Mo-AgNPs that inhibit and kill the isolated food - borne pathogens were 3.125 and 50 µg/ml respectively. Mo-AgNPs effectively reduced the biofilm formation in all the tested strains. Molecular docking studies confirmed that the Ellagic acid has the least value of - 8.6 and - 8.9 kcal/mol with beta lactamase of Enterobacter cloacae and beta lactamase OXY1 of Klebsiella oxytoca respectively. Quercetin, Apigenin, Riboflavin and kaempferol have lower values of - 7.7, - 7.6, - 7.8 and - 7 kcal/mol (Enterobacter cloacae) and - 8.3, - 7.8, - 7.9 and - 7.7 kcal/mol (Klebsiella oxytoca), respectively. Through this study it was proven that the synthesized Mo-AgNPs could have the potential to fight against the bacterial pathogens that are responsible for food - borne diseases and food spoilage. In the future, Mo-AgNPs can be utilized to develop food packaging biomaterials that can increase the shelf life and prevent food from spoilage.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"20 1","pages":"103"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-025-04292-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Green nanoparticles are economically beneficial and do not harm the environment as they are eco-friendly when compared with chemically synthesized silver nanoparticles. Contamination of food and food products with micro-organisms can cause food spoilage and food-borne diseases. This research mainly focuses on United Nations Sustainable Development Goals (SDGs 2, 3, 6, 9, 12), particularly in the areas of health, food safety, and sustainable innovation. The aim of the study was to synthesize Moringa oleifera flower mediated silver nanoparticles to control the growth and biofilm formation in isolated food - borne pathogens. The fresh extract obtained from the flowers of Moringa oleifera has been utilized for the synthesis of silver nanoparticles (Mo-AgNPs). The Mo-AgNPs were characterized by using various analytical techniques. In silico analysis has been carried out to know the binding potential of phytocompounds of Moringa oleifera with the virulent proteins of bacterial strains. The toxicity effect of Mo-AgNPs was evaluated by using seed germination studies with the seeds of Vigna radiata and evaluated the toxicity effect in Artemia nauplii based on its mortality rate. The novelty of the work is to evaluate the antibacterial efficacy of the synthesized Mo-AgNPs, antimicrobial assays including agar well diffusion, Minimum Inhibition Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Biofilm formation assay were performed in the bacterial strains isolated from spoiled food. Mo-AgNPs confirmed its nanosize by depicting the particle size as 12.73 nm with 0.115 mV. Mo-AgNPs showed potential benefit for plant growth and exhibited toxicity to Artemia nauplii at higher concentration. The maximum concentrations of Mo-AgNPs that inhibit and kill the isolated food - borne pathogens were 3.125 and 50 µg/ml respectively. Mo-AgNPs effectively reduced the biofilm formation in all the tested strains. Molecular docking studies confirmed that the Ellagic acid has the least value of - 8.6 and - 8.9 kcal/mol with beta lactamase of Enterobacter cloacae and beta lactamase OXY1 of Klebsiella oxytoca respectively. Quercetin, Apigenin, Riboflavin and kaempferol have lower values of - 7.7, - 7.6, - 7.8 and - 7 kcal/mol (Enterobacter cloacae) and - 8.3, - 7.8, - 7.9 and - 7.7 kcal/mol (Klebsiella oxytoca), respectively. Through this study it was proven that the synthesized Mo-AgNPs could have the potential to fight against the bacterial pathogens that are responsible for food - borne diseases and food spoilage. In the future, Mo-AgNPs can be utilized to develop food packaging biomaterials that can increase the shelf life and prevent food from spoilage.

花提取物修饰纳米颗粒对食源性病原体的抗菌潜力。
与化学合成的纳米银相比,绿色纳米银不仅经济效益高,而且对环境无害。微生物污染食品和食品可导致食品变质和食源性疾病。本研究主要关注联合国可持续发展目标(sdg 2、3、6、9、12),特别是在健康、食品安全和可持续创新领域。本研究的目的是合成辣木花介导的银纳米颗粒,以控制分离食源性病原体的生长和生物膜的形成。从辣木花中提取的新鲜提取物被用于合成纳米银(Mo-AgNPs)。利用各种分析技术对Mo-AgNPs进行了表征。用硅离子分析方法研究了辣木化合物与菌株毒力蛋白的结合势。通过对紫荆种子的萌发研究,评价了Mo-AgNPs对紫荆的毒效,并以其致死率评价了其对紫荆的毒效。本工作的新颖之处是评价合成的Mo-AgNPs的抗菌效果,对从变质食品中分离的菌株进行了琼脂孔扩散、最低抑制浓度(MIC)、最低杀菌浓度(MBC)和生物膜形成试验。Mo-AgNPs在0.115 mV下的粒径为12.73 nm,证实了其纳米尺寸。Mo-AgNPs对植物生长有潜在的益处,但在较高浓度下对蒿具有毒性。抑制和杀伤食源性致病菌的最高浓度分别为3.125µg/ml和50µg/ml。Mo-AgNPs有效地减少了所有被试菌株的生物膜形成。分子对接研究证实,鞣花酸与阴沟肠杆菌的β -内酰胺酶和克雷伯菌的β -内酰胺酶OXY1分别具有- 8.6和- 8.9 kcal/mol的最小值。槲皮素、芹菜素、核黄素和山奈酚的含量较低,阴沟肠杆菌为- 7.7、- 7.6、- 7.8和- 7 kcal/mol,克雷伯菌为- 8.3、- 7.8、- 7.9和- 7.7 kcal/mol。通过本研究证明,合成的Mo-AgNPs具有对抗食源性疾病和食品腐败的细菌性病原体的潜力。在未来,Mo-AgNPs可以用于开发食品包装生物材料,可以延长保质期,防止食品变质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信