Systematic engineering of synthetic serine cycles in Pseudomonas putida uncovers emergent topologies for methanol assimilation.

IF 14.9 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Trends in biotechnology Pub Date : 2025-10-01 Epub Date: 2025-07-05 DOI:10.1016/j.tibtech.2025.06.001
Òscar Puiggené, Jaime Muñoz-Triviño, Laura Civil-Ferrer, Line Gille, Helena Schulz-Mirbach, Daniel Bergen, Tobias J Erb, Birgitta E Ebert, Pablo I Nikel
{"title":"Systematic engineering of synthetic serine cycles in Pseudomonas putida uncovers emergent topologies for methanol assimilation.","authors":"Òscar Puiggené, Jaime Muñoz-Triviño, Laura Civil-Ferrer, Line Gille, Helena Schulz-Mirbach, Daniel Bergen, Tobias J Erb, Birgitta E Ebert, Pablo I Nikel","doi":"10.1016/j.tibtech.2025.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>The urgent need for a circular carbon economy has driven research into sustainable substrates, including one-carbon (C<sub>1</sub>) compounds. The non-pathogenic soil bacterium Pseudomonas putida is a promising host for exploring synthetic methylotrophy due to its versatile metabolism. In this research article we implemented synthetic serine cycle variants in P. putida for methanol assimilation, combining modular engineering and growth-coupled selection, whereby methanol assimilation supported biosynthesis of the essential amino acid serine. We adopted three synthetic variants (serine-threonine cycle, homoserine cycle, and modified serine cycle), divided these metabolic architectures into functional modules, and systematically compared their performance for in vivo implementation. Additionally, we harnessed native pyrroloquinoline quinone (PQQ)-dependent dehydrogenases for engineering methylotrophy. Recursive rewiring of synthetic and native activities revealed novel metabolic topologies for methanol utilization, termed enhanced serine-threonine cycle, providing a blueprint for engineering C<sub>1</sub> assimilation in non-model heterotrophic bacteria.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":"2539-2565"},"PeriodicalIF":14.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.06.001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The urgent need for a circular carbon economy has driven research into sustainable substrates, including one-carbon (C1) compounds. The non-pathogenic soil bacterium Pseudomonas putida is a promising host for exploring synthetic methylotrophy due to its versatile metabolism. In this research article we implemented synthetic serine cycle variants in P. putida for methanol assimilation, combining modular engineering and growth-coupled selection, whereby methanol assimilation supported biosynthesis of the essential amino acid serine. We adopted three synthetic variants (serine-threonine cycle, homoserine cycle, and modified serine cycle), divided these metabolic architectures into functional modules, and systematically compared their performance for in vivo implementation. Additionally, we harnessed native pyrroloquinoline quinone (PQQ)-dependent dehydrogenases for engineering methylotrophy. Recursive rewiring of synthetic and native activities revealed novel metabolic topologies for methanol utilization, termed enhanced serine-threonine cycle, providing a blueprint for engineering C1 assimilation in non-model heterotrophic bacteria.

恶臭假单胞菌合成丝氨酸循环的系统工程揭示了甲醇同化的新兴拓扑结构。
对循环碳经济的迫切需求推动了对可持续底物的研究,包括一碳(C1)化合物。非致病性土壤细菌恶臭假单胞菌具有多种代谢功能,是探索合成甲基化的理想宿主。在本研究中,我们采用模块化工程和生长偶联选择相结合的方法,在恶臭p.p . putida中实现了用于甲醇同化的合成丝氨酸循环变体,利用甲醇同化支持必需氨基酸丝氨酸的生物合成。我们采用了三种合成变体(丝氨酸-苏氨酸循环、同丝氨酸循环和修饰丝氨酸循环),将这些代谢结构划分为功能模块,并系统地比较了它们在体内实现的性能。此外,我们利用天然的吡咯喹啉醌(PQQ)依赖脱氢酶进行工程甲基化。合成和天然活性的递归重新布线揭示了甲醇利用的新代谢拓扑结构,称为增强丝氨酸-苏氨酸循环,为非模式异养细菌的C1同化工程提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信