Cyclic expansion extrusion results in successful consolidation and enhancements in mechanical and physical properties of semi biodegradable Ti-Mg composite implants.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Elnaz Gharehdaghi, Faramarz Fereshteh-Saniee
{"title":"Cyclic expansion extrusion results in successful consolidation and enhancements in mechanical and physical properties of semi biodegradable Ti-Mg composite implants.","authors":"Elnaz Gharehdaghi, Faramarz Fereshteh-Saniee","doi":"10.1038/s41598-025-07446-z","DOIUrl":null,"url":null,"abstract":"<p><p>In the present research work, the cyclic expansion-extrusion (CEE) method which is a simple and effective bulk severe plastic deformation (SPD) technique is used to successfully consolidate titanium-magnesium powder to produce rod implants for biomaterial applications. After insertion of such implant in the body, degradation of Mg and replacement of the bone tissues, its whole mechanical behavior converts much closer to that of the bone. Accordingly, the influences of the processing speed and the number of CEE passes on the consolidated samples were assessed by examining the improvements in density, various mechanical properties and the microstructure of the Ti-Mg products. The compressive strength of the composite rod, made under four different process conditions, ranged from 354.7 MPa to 712.7 MPa, acceptable compared with the values for the human bone. Adding magnesium has caused a reduction in the elastic modulus of the Ti-Mg composite, favorable to avoid the stress shielding. The findings presented in this article have shown that by adjusting the parameters of the CEE process, it is possible to create an implant material with the necessary mechanical properties tailored for specific applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24050"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12228756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07446-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the present research work, the cyclic expansion-extrusion (CEE) method which is a simple and effective bulk severe plastic deformation (SPD) technique is used to successfully consolidate titanium-magnesium powder to produce rod implants for biomaterial applications. After insertion of such implant in the body, degradation of Mg and replacement of the bone tissues, its whole mechanical behavior converts much closer to that of the bone. Accordingly, the influences of the processing speed and the number of CEE passes on the consolidated samples were assessed by examining the improvements in density, various mechanical properties and the microstructure of the Ti-Mg products. The compressive strength of the composite rod, made under four different process conditions, ranged from 354.7 MPa to 712.7 MPa, acceptable compared with the values for the human bone. Adding magnesium has caused a reduction in the elastic modulus of the Ti-Mg composite, favorable to avoid the stress shielding. The findings presented in this article have shown that by adjusting the parameters of the CEE process, it is possible to create an implant material with the necessary mechanical properties tailored for specific applications.

循环膨胀挤压导致半生物可降解钛-镁复合植入物的成功固结和力学和物理性能的增强。
本研究采用循环膨胀-挤压法(CEE)作为一种简单有效的体强塑性变形(SPD)技术,成功地将钛镁粉固化制成生物材料棒状植入体。这种植入物植入体内后,经过Mg的降解和骨组织的置换,其整体力学行为更接近于骨的力学行为。因此,通过检测Ti-Mg产品的密度、各种力学性能和显微组织的改善,评估了处理速度和CEE次数对固结样品的影响。在四种不同工艺条件下制成的复合棒的抗压强度范围从354.7 MPa到712.7 MPa,与人骨的值相比是可以接受的。镁的加入使Ti-Mg复合材料的弹性模量降低,有利于避免应力屏蔽。本文的研究结果表明,通过调整CEE工艺的参数,可以创建具有特定应用所需机械性能的植入材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信