Assessment of Ion Leachable Resin Composites: Time-Dependent Water Sorption, Solubility and Hygroscopic Expansion.

IF 3.1 4区 医学 Q2 BIOPHYSICS
Abdullah Alshehri, Ahmed A Almokhatieb, Mohammed Mustafa, Khaled Abid Althaqafi, Waseem Waleed Radwan, Mohammad Khursheed Alam
{"title":"Assessment of Ion Leachable Resin Composites: Time-Dependent Water Sorption, Solubility and Hygroscopic Expansion.","authors":"Abdullah Alshehri, Ahmed A Almokhatieb, Mohammed Mustafa, Khaled Abid Althaqafi, Waseem Waleed Radwan, Mohammad Khursheed Alam","doi":"10.1177/22808000251348969","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to assess the time-dependent water sorption, solubility and hygroscopic expansion of experimental resin composites modified with three different types of ion-leachable glasses (ILGs): 45S5 Bioglass (BG), Fluoride-containing glass (F9) and Experimental fluoride-phosphate glass (F9X), incorporated in varying weight percentages (5%, 10% and 15%).</p><p><strong>Materials and methods: </strong>A 50:50 Bis-GMA/TEGDMA-based resin matrix was loaded with each ILG type in 5, 10 and 15 wt% and compared against a control without filler. Disc-shaped specimens (<i>n</i> = 3 per group; total = 39) were fabricated using a stainless-steel mould and cured using an LED light-curing unit (1200 mW/cm², 20 s per side). The water sorption and solubility were evaluated using a modified ISO 4049 protocol over a 12-week immersion period in distilled water at 37°C, followed by an 8-week desorption phase. Hygroscopic expansion was evaluated through volume change using a digital micrometre. Data were statistically analysed using one-way ANOVA and Tukey's post-hoc test.</p><p><strong>Results: </strong>All ILG-containing composites showed significantly increased water sorption compared to the control, with the BG-15 group demonstrating the highest sorption (3.37% ± 0.09) and expansion. Solubility increased with ILG concentration, especially in the BG and F9X groups. Hygroscopic expansion correlated positively with water uptake. No significant changes were observed in specimen mass after desorption in low filler groups.</p><p><strong>Conclusion: </strong>The incorporation of ILGs into resin composites significantly altered their water uptake and dimensional stability. While these effects could compromise long-term mechanical properties, the resulting hygroscopic expansion may aid in reducing microgaps and secondary caries at restoration margins. Veneering ILG-containing composites with conventional materials is recommended to limit degradation. These findings contribute novel insights into time-dependent dimensional behaviour of bioactive composites.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"23 ","pages":"22808000251348969"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000251348969","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This study aimed to assess the time-dependent water sorption, solubility and hygroscopic expansion of experimental resin composites modified with three different types of ion-leachable glasses (ILGs): 45S5 Bioglass (BG), Fluoride-containing glass (F9) and Experimental fluoride-phosphate glass (F9X), incorporated in varying weight percentages (5%, 10% and 15%).

Materials and methods: A 50:50 Bis-GMA/TEGDMA-based resin matrix was loaded with each ILG type in 5, 10 and 15 wt% and compared against a control without filler. Disc-shaped specimens (n = 3 per group; total = 39) were fabricated using a stainless-steel mould and cured using an LED light-curing unit (1200 mW/cm², 20 s per side). The water sorption and solubility were evaluated using a modified ISO 4049 protocol over a 12-week immersion period in distilled water at 37°C, followed by an 8-week desorption phase. Hygroscopic expansion was evaluated through volume change using a digital micrometre. Data were statistically analysed using one-way ANOVA and Tukey's post-hoc test.

Results: All ILG-containing composites showed significantly increased water sorption compared to the control, with the BG-15 group demonstrating the highest sorption (3.37% ± 0.09) and expansion. Solubility increased with ILG concentration, especially in the BG and F9X groups. Hygroscopic expansion correlated positively with water uptake. No significant changes were observed in specimen mass after desorption in low filler groups.

Conclusion: The incorporation of ILGs into resin composites significantly altered their water uptake and dimensional stability. While these effects could compromise long-term mechanical properties, the resulting hygroscopic expansion may aid in reducing microgaps and secondary caries at restoration margins. Veneering ILG-containing composites with conventional materials is recommended to limit degradation. These findings contribute novel insights into time-dependent dimensional behaviour of bioactive composites.

离子可浸树脂复合材料的评估:随时间的吸水性,溶解度和吸湿膨胀。
目的:本研究旨在评估三种不同类型的可离子浸出玻璃(ILGs): 45S5生物玻璃(BG),含氟玻璃(F9)和实验氟化物-磷酸盐玻璃(F9X),掺入不同重量百分比(5%,10%和15%)改性的实验树脂复合材料的吸水性,溶解度和吸湿膨胀性。材料和方法:将50:50的Bis-GMA/ tegdma基树脂基质分别以5%、10%和15%的重量填充每种ILG类型,并与未填充的对照进行比较。盘状标本(n = 3 /组);总共= 39)使用不锈钢模具制造,并使用LED光固化装置(1200 mW/cm²,每边20秒)固化。在37°C的蒸馏水中浸泡12周,然后进行8周的解吸阶段,使用改进的ISO 4049方案评估水的吸附性和溶解度。通过使用数字千分尺的体积变化来评估吸湿膨胀。数据采用单因素方差分析和Tukey事后检验进行统计学分析。结果:与对照组相比,所有含ilg的复合材料的吸水性均显著增加,其中BG-15组的吸水性和膨胀率最高(3.37%±0.09)。溶解度随ILG浓度增加而增加,特别是BG和F9X组。吸湿膨胀与吸水性呈正相关。低填料组解吸后标本质量无明显变化。结论:ILGs的加入显著改变了树脂复合材料的吸水性和尺寸稳定性。虽然这些影响可能会损害长期力学性能,但由此产生的吸湿膨胀可能有助于减少修复边缘的微间隙和继发性龋病。建议用常规材料贴面含有ilg的复合材料以限制降解。这些发现对生物活性复合材料随时间变化的尺寸行为提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信