{"title":"Determination of survival associated genetic biomarkers to discover novel therapeutic targets for acute myeloid leukaemia.","authors":"Cansu Ergun, Yağmur Kiraz, Gizem Ayna Duran","doi":"10.1080/1120009X.2025.2527464","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a heterogeneous malignancy specified by clonal proliferation of hematopoietic stem cells. This study identifies novel therapeutics for AML by integrating differential gene expression (DEG) and survival analyses. Publicly available GEO microarray datasets were analyzed, including data from 615 AML patients and 22 healthy controls. Multivariate Cox regression identified hazardous genes impacting survival. Protein-protein interaction networks using CytoScape revealed hub genes such as CCT5, ZBTB16, APP, and PTPN6. Functional enrichment revealed key AML-related pathways, such as PI3K/Akt and NF-kappaB signaling. Drug repurposing using the LINCS L1000CDS2 database highlighted potential therapeutics, including 16-Hydroxytriptolide and Tryptosthin AG-1478, with roles in reversing hazardous gene expression patterns. Additional candidates such as Vemurafenib, Parthenolide and Wortmannin, demonstrated promise as targeted agents. These findings underscore the potential of integrating bioinformatics and drug discovery to identify precision medicine in AML. Further studies are warranted to validate these targets and explore their clinical utility.</p>","PeriodicalId":15338,"journal":{"name":"Journal of Chemotherapy","volume":" ","pages":"1-17"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1120009X.2025.2527464","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy specified by clonal proliferation of hematopoietic stem cells. This study identifies novel therapeutics for AML by integrating differential gene expression (DEG) and survival analyses. Publicly available GEO microarray datasets were analyzed, including data from 615 AML patients and 22 healthy controls. Multivariate Cox regression identified hazardous genes impacting survival. Protein-protein interaction networks using CytoScape revealed hub genes such as CCT5, ZBTB16, APP, and PTPN6. Functional enrichment revealed key AML-related pathways, such as PI3K/Akt and NF-kappaB signaling. Drug repurposing using the LINCS L1000CDS2 database highlighted potential therapeutics, including 16-Hydroxytriptolide and Tryptosthin AG-1478, with roles in reversing hazardous gene expression patterns. Additional candidates such as Vemurafenib, Parthenolide and Wortmannin, demonstrated promise as targeted agents. These findings underscore the potential of integrating bioinformatics and drug discovery to identify precision medicine in AML. Further studies are warranted to validate these targets and explore their clinical utility.
期刊介绍:
The Journal of Chemotherapy is an international multidisciplinary journal committed to the rapid publication of high quality, peer-reviewed, original research on all aspects of antimicrobial and antitumor chemotherapy.
The Journal publishes original experimental and clinical research articles, state-of-the-art reviews, brief communications and letters on all aspects of chemotherapy, providing coverage of the pathogenesis, diagnosis, treatment, and control of infection, as well as the use of anticancer and immunomodulating drugs.
Specific areas of focus include, but are not limited to:
· Antibacterial, antiviral, antifungal, antiparasitic, and antiprotozoal agents;
· Anticancer classical and targeted chemotherapeutic agents, biological agents, hormonal drugs, immunomodulatory drugs, cell therapy and gene therapy;
· Pharmacokinetic and pharmacodynamic properties of antimicrobial and anticancer agents;
· The efficacy, safety and toxicology profiles of antimicrobial and anticancer drugs;
· Drug interactions in single or combined applications;
· Drug resistance to antimicrobial and anticancer drugs;
· Research and development of novel antimicrobial and anticancer drugs, including preclinical, translational and clinical research;
· Biomarkers of sensitivity and/or resistance for antimicrobial and anticancer drugs;
· Pharmacogenetics and pharmacogenomics;
· Precision medicine in infectious disease therapy and in cancer therapy;
· Pharmacoeconomics of antimicrobial and anticancer therapies and the implications to patients, health services, and the pharmaceutical industry.