Tomasz Skóra, Jiangbo Wu, Daniel Beckett, Weizhi Xue, Gregory A Voth, Tamara C Bidone
{"title":"On the Curvature and Relaxation of Microtubule Plus-end Tips.","authors":"Tomasz Skóra, Jiangbo Wu, Daniel Beckett, Weizhi Xue, Gregory A Voth, Tamara C Bidone","doi":"10.1016/j.bpj.2025.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubules are essential cytoskeletal components with a broad range of functions in which the structure and dynamics of their plus-end tips play critical roles. Existing mechanistic models explain the tips curving dynamics in different ways: the allosteric model suggests that GTP hydrolysis induces conformational changes in tubulin subunits that destabilize the lattice, leading to protofilament curving and depolymerization, while the lattice model posits that GTP hydrolysis directly destabilizes the microtubule lattice . However, the effect of GTP hydrolysis on the curving dynamics of microtubule tips remains incompletely understood. In this study, we employed a multiscale modeling approach, combining all-atom molecular dynamics simulations with Brownian dynamics simulations, to investigate the relaxation of microtubule plus-end tips into curved configurations. Our results show that both GDP- and GTP-bound tips exhibit an outward bending of protofilaments into curved, ram's horn-like structures, characterized by a linear relationship between curvature and distance from the plus-end tip. These observations align with experimental cryo-ET images of microtubule plus-end tips in different nucleotide states. Collectively, our findings suggest that the outward bending of protofilaments at the plus-end tip is an intrinsic feature of microtubules, independent of the nucleotide state.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.07.003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Microtubules are essential cytoskeletal components with a broad range of functions in which the structure and dynamics of their plus-end tips play critical roles. Existing mechanistic models explain the tips curving dynamics in different ways: the allosteric model suggests that GTP hydrolysis induces conformational changes in tubulin subunits that destabilize the lattice, leading to protofilament curving and depolymerization, while the lattice model posits that GTP hydrolysis directly destabilizes the microtubule lattice . However, the effect of GTP hydrolysis on the curving dynamics of microtubule tips remains incompletely understood. In this study, we employed a multiscale modeling approach, combining all-atom molecular dynamics simulations with Brownian dynamics simulations, to investigate the relaxation of microtubule plus-end tips into curved configurations. Our results show that both GDP- and GTP-bound tips exhibit an outward bending of protofilaments into curved, ram's horn-like structures, characterized by a linear relationship between curvature and distance from the plus-end tip. These observations align with experimental cryo-ET images of microtubule plus-end tips in different nucleotide states. Collectively, our findings suggest that the outward bending of protofilaments at the plus-end tip is an intrinsic feature of microtubules, independent of the nucleotide state.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.