{"title":"Caffeine-catalyzed synthesis of photopolymers for digital light processing†","authors":"Warrick Ma, Anthony R. D'Amato and Yadong Wang","doi":"10.1039/D5GC00177C","DOIUrl":null,"url":null,"abstract":"<p >We report an elastic, degradable, and sustainable thiol–norbornene photopolymer for digital light processing. Caffeine, benign and bio-derived, catalyzes the in-tandem ring-opening reaction of <em>cis</em>-5-norbornene-<em>endo</em>-2,3-dicarboxylic anhydride and propylene oxide by alcohol-terminated polycaprolactone and produces the polymer at a 90 g scale. The synthesis tolerates moisture and adheres to green chemistry principles. The product doesn't require purification; mixing it directly with thiol cross-linkers and photo-additives affords the thiol–norbornene photopolymer. Digital light processing converts the photopolymer into high-fidelity prints with excellent elastic recovery. Printed objects include a 3D aortic arch and branched carotid artery rendered from anonymized patient CT scans and microfluidic devices with patent 3D corkscrew channels. Caffeine-catalysis affords various percentages of alcohol chain end that control the photopolymer's degradation rate. The material demonstrates good biocompatibility <em>in vitro</em> and in a subcutaneous implantation model. The elasticity, biocompatibility, affordability, sustainability, and versatility of this new photopolymer platform will open up new opportunities for sustainable 3D printing materials.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 27","pages":" 8319-8332"},"PeriodicalIF":9.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d5gc00177c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc00177c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report an elastic, degradable, and sustainable thiol–norbornene photopolymer for digital light processing. Caffeine, benign and bio-derived, catalyzes the in-tandem ring-opening reaction of cis-5-norbornene-endo-2,3-dicarboxylic anhydride and propylene oxide by alcohol-terminated polycaprolactone and produces the polymer at a 90 g scale. The synthesis tolerates moisture and adheres to green chemistry principles. The product doesn't require purification; mixing it directly with thiol cross-linkers and photo-additives affords the thiol–norbornene photopolymer. Digital light processing converts the photopolymer into high-fidelity prints with excellent elastic recovery. Printed objects include a 3D aortic arch and branched carotid artery rendered from anonymized patient CT scans and microfluidic devices with patent 3D corkscrew channels. Caffeine-catalysis affords various percentages of alcohol chain end that control the photopolymer's degradation rate. The material demonstrates good biocompatibility in vitro and in a subcutaneous implantation model. The elasticity, biocompatibility, affordability, sustainability, and versatility of this new photopolymer platform will open up new opportunities for sustainable 3D printing materials.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.