Pan Deng, Wenze Lyu, Deasung Jang, Kerryn Matthews, Simon P. Duffy and Hongshen Ma
{"title":"High-throughput single cell motility analysis using nanowell-in-microwells","authors":"Pan Deng, Wenze Lyu, Deasung Jang, Kerryn Matthews, Simon P. Duffy and Hongshen Ma","doi":"10.1039/D5LC00478K","DOIUrl":null,"url":null,"abstract":"<p >Cell motility is important to many biological processes including cancer, immune response, and tissue repair. Conventional assays measure bulk cell motility, potentially overlooking important heterogeneity and missing important high motility subpopulations. Here, we introduce a high-throughput single-cell motility assay using nanowell-in-microwell plates to precisely track single cell position and analyze their migratory trajectories. By physically confining individual cells in nanowells, we eliminate cell–cell interactions and simplify cell segmentation and tracking. Using this platform, we characterized the motility of single cells across different culture conditions to identify distinct motility phenotypes. Single-cell trajectory analysis revealed pronounced directional persistence, with cells predominantly maintaining their direction of travel and trajectory along nanowell boundaries. Additionally, our approach facilitates the generation of labeled image datasets suitable for AI models to rapidly identify cell motility phenotypes from single-cell images. Together, our platform provides a robust, scalable method to analyze cell motility phenotypes and migration behavior at single-cell resolution.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 15","pages":" 3672-3681"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d5lc00478k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d5lc00478k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cell motility is important to many biological processes including cancer, immune response, and tissue repair. Conventional assays measure bulk cell motility, potentially overlooking important heterogeneity and missing important high motility subpopulations. Here, we introduce a high-throughput single-cell motility assay using nanowell-in-microwell plates to precisely track single cell position and analyze their migratory trajectories. By physically confining individual cells in nanowells, we eliminate cell–cell interactions and simplify cell segmentation and tracking. Using this platform, we characterized the motility of single cells across different culture conditions to identify distinct motility phenotypes. Single-cell trajectory analysis revealed pronounced directional persistence, with cells predominantly maintaining their direction of travel and trajectory along nanowell boundaries. Additionally, our approach facilitates the generation of labeled image datasets suitable for AI models to rapidly identify cell motility phenotypes from single-cell images. Together, our platform provides a robust, scalable method to analyze cell motility phenotypes and migration behavior at single-cell resolution.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.