Exploiting strained epitaxial germanium for scaling low-noise spin qubits at the micrometre scale

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lucas E. A. Stehouwer, Cécile X. Yu, Barnaby van Straaten, Alberto Tosato, Valentin John, Davide Degli Esposti, Asser Elsayed, Davide Costa, Stefan D. Oosterhout, Nico W. Hendrickx, Menno Veldhorst, Francesco Borsoi, Giordano Scappucci
{"title":"Exploiting strained epitaxial germanium for scaling low-noise spin qubits at the micrometre scale","authors":"Lucas E. A. Stehouwer, Cécile X. Yu, Barnaby van Straaten, Alberto Tosato, Valentin John, Davide Degli Esposti, Asser Elsayed, Davide Costa, Stefan D. Oosterhout, Nico W. Hendrickx, Menno Veldhorst, Francesco Borsoi, Giordano Scappucci","doi":"10.1038/s41563-025-02276-w","DOIUrl":null,"url":null,"abstract":"<p>Disorder in the heterogeneous material stack of semiconductor spin qubit systems introduces noise that compromises quantum information processing, posing a challenge to coherently control large-scale quantum devices. Here we exploit low-disorder epitaxial, strained quantum wells in Ge/SiGe heterostructures grown on Ge wafers to comprehensively probe the noise properties of complex micrometre-scale devices, comprising quantum dots arranged in a two-dimensional array. We demonstrate an average low charge noise across different locations on the wafer, providing a benchmark for quantum confined holes. We then establish spin qubit control and extend our investigation from electrical to magnetic noise through spin echo measurements. Exploiting dynamical decoupling sequences, we quantify the power spectral density components arising from the hyperfine interaction with <sup>73</sup>Ge spinful isotopes and identify coherence modulations associated with the interaction with the <sup>29</sup>Si nuclear spin bath near the Ge quantum well, underscoring the need for full isotopic purification of the qubit host environment.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"37 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02276-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Disorder in the heterogeneous material stack of semiconductor spin qubit systems introduces noise that compromises quantum information processing, posing a challenge to coherently control large-scale quantum devices. Here we exploit low-disorder epitaxial, strained quantum wells in Ge/SiGe heterostructures grown on Ge wafers to comprehensively probe the noise properties of complex micrometre-scale devices, comprising quantum dots arranged in a two-dimensional array. We demonstrate an average low charge noise across different locations on the wafer, providing a benchmark for quantum confined holes. We then establish spin qubit control and extend our investigation from electrical to magnetic noise through spin echo measurements. Exploiting dynamical decoupling sequences, we quantify the power spectral density components arising from the hyperfine interaction with 73Ge spinful isotopes and identify coherence modulations associated with the interaction with the 29Si nuclear spin bath near the Ge quantum well, underscoring the need for full isotopic purification of the qubit host environment.

Abstract Image

利用应变外延锗在微米尺度上缩放低噪声自旋量子位
半导体自旋量子比特系统的非均质材料堆叠中的无序引入了影响量子信息处理的噪声,对大规模量子器件的相干控制提出了挑战。在这里,我们利用生长在Ge晶片上的Ge/SiGe异质结构中的低无序外延应变量子阱,全面探测由二维排列的量子点组成的复杂微米级器件的噪声特性。我们展示了晶圆上不同位置的平均低电荷噪声,为量子受限空穴提供了基准。然后,我们建立自旋量子比特控制,并通过自旋回波测量将我们的研究从电噪声扩展到磁噪声。利用动态解耦序列,我们量化了与73Ge自旋同位素超精细相互作用产生的功率谱密度分量,并确定了与Ge量子阱附近29Si核自旋浴相互作用相关的相干调制,强调了对量子比特宿主环境进行完全同位素纯化的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信