Bipyridinic Iron Single Atom in Metal–Organic Frameworks as Electronic Pump of H2O2 for Continuous Water Decontamination

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Limin Duan, Huihao Jiang, Borui Cai, Jiali Wang, Wenhao Wu, Daohui Lin, Kun Yang
{"title":"Bipyridinic Iron Single Atom in Metal–Organic Frameworks as Electronic Pump of H2O2 for Continuous Water Decontamination","authors":"Limin Duan, Huihao Jiang, Borui Cai, Jiali Wang, Wenhao Wu, Daohui Lin, Kun Yang","doi":"10.1002/adfm.202509337","DOIUrl":null,"url":null,"abstract":"Although Fenton‐like reaction has emerged as a promising water decontamination technology, the electron scarcity and instability of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> for hydroxyl radicals (·OH) generation still remain a fundamental challenge. Considering organic pollutants as an electron reservoir, this work cleverly designs an electronic pump of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>, i.e., bipyridinic iron single atom (BPY‐Fe), into metal–organic frameworks, by using an anchored ligand. In situ experiment and theoretical calculation reveal that the adsorbed H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> on Fe sites can induces intramolecular electron transfer of BPY‐Fe to form BPY organic radical (·BPY<jats:sup>+</jats:sup>), which ·BPY<jats:sup>+</jats:sup>‐Fe sites can capture single electron of organic pollutants and further unidirectionally transport it to H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>, accompanying with pollutant polymerization on catalyst surface, greatly decreasing H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> consumption. Meanwhile, organic pollutant greatly boosts ·OH generation and inhibit the side reaction of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> losing electron in ·BPY<jats:sup>+</jats:sup>‐Fe directed Fenton‐like reaction, significantly increasing H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> utilization efficiency. Benefiting from BPY‐Fe electronic pump, the constructed Fenton‐like catalyst exhibits both superior activity and long‐term stability, delivering higher reaction rate constant (<jats:italic>k</jats:italic><jats:sub>N</jats:sub> = 56–100 min<jats:sup>−1</jats:sup>/M<jats:sub>H2O2)</jats:sub> for bisphenol A, p‐chlorophenol, phenol and tetracycline degradation with lower H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> usage than reported Fenton‐like catalyst (<jats:italic>k</jats:italic><jats:sub>N</jats:sub> = 0.2–40 min<jats:sup>−1</jats:sup>/M<jats:sub>H2O2</jats:sub>, and achieving over 90% bisphenol A degradation efficiency for 10 h operation of continues‐flow reactor.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"196 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509337","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although Fenton‐like reaction has emerged as a promising water decontamination technology, the electron scarcity and instability of H2O2 for hydroxyl radicals (·OH) generation still remain a fundamental challenge. Considering organic pollutants as an electron reservoir, this work cleverly designs an electronic pump of H2O2, i.e., bipyridinic iron single atom (BPY‐Fe), into metal–organic frameworks, by using an anchored ligand. In situ experiment and theoretical calculation reveal that the adsorbed H2O2 on Fe sites can induces intramolecular electron transfer of BPY‐Fe to form BPY organic radical (·BPY+), which ·BPY+‐Fe sites can capture single electron of organic pollutants and further unidirectionally transport it to H2O2, accompanying with pollutant polymerization on catalyst surface, greatly decreasing H2O2 consumption. Meanwhile, organic pollutant greatly boosts ·OH generation and inhibit the side reaction of H2O2 losing electron in ·BPY+‐Fe directed Fenton‐like reaction, significantly increasing H2O2 utilization efficiency. Benefiting from BPY‐Fe electronic pump, the constructed Fenton‐like catalyst exhibits both superior activity and long‐term stability, delivering higher reaction rate constant (kN = 56–100 min−1/MH2O2) for bisphenol A, p‐chlorophenol, phenol and tetracycline degradation with lower H2O2 usage than reported Fenton‐like catalyst (kN = 0.2–40 min−1/MH2O2, and achieving over 90% bisphenol A degradation efficiency for 10 h operation of continues‐flow reactor.
金属-有机骨架中双联吡啶铁单原子作为H2O2的电子泵用于水的连续净化
虽然类芬顿反应已经成为一种很有前途的水净化技术,但电子的稀缺性和H2O2生成羟基自由基(·OH)的不稳定性仍然是一个根本性的挑战。考虑到有机污染物是一个电子储层,本研究巧妙地设计了H2O2的电子泵,即双吡啶铁单原子(BPY‐Fe),通过锚定配体进入金属有机框架。原位实验和理论计算表明,吸附在Fe位点上的H2O2可以诱导BPY - Fe分子内电子转移形成BPY有机自由基(·BPY+),而·BPY+ - Fe位点可以捕获有机污染物的单电子,并进一步将其单向输送到H2O2上,同时污染物在催化剂表面聚合,大大降低H2O2的消耗。同时,有机污染物极大地促进了·OH的生成,抑制了·BPY+‐Fe导向Fenton类反应中H2O2失电子的副反应,显著提高了H2O2的利用效率。利用BPY - Fe电子泵,所构建的Fenton - like催化剂具有优异的活性和长期稳定性,与已有报道的Fenton - like催化剂(kN = 0.2-40 min - 1/MH2O2)相比,在H2O2用量较低的情况下,对双酚A、对氯酚、苯酚和四环素的降解具有更高的反应速率常数(kN = 56-100 min - 1/MH2O2),在连续流反应器运行10小时后,双酚A的降解效率超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信