Wenbing Jiang, Jiang Qu, Yu Guo, Boyu Zhang, Jia Du, Xiongping Bao, Xiao Chen, Weibiao Chen, Libing Zhou
{"title":"High performance mode (de)multiplexer assisted with a microring resonator on the lithium niobate-on-insulator platform","authors":"Wenbing Jiang, Jiang Qu, Yu Guo, Boyu Zhang, Jia Du, Xiongping Bao, Xiao Chen, Weibiao Chen, Libing Zhou","doi":"10.1515/nanoph-2025-0146","DOIUrl":null,"url":null,"abstract":"The high extinction ratio mode (de)multiplexer is a pivotal component in high capacity mode-division multiplexing data communication and nascent on-chip intermodal acousto-optic modulators. Up to now, high performance on-chip mode (de)multiplexers are still lacking for integrated AOMs on the lithium niobate-on-insulator platform. In this paper, we propose and demonstrate an innovative scheme to achieve high extinction ratio signal routing for acousto-optic modulation, by leveraging a two-mode (de)multiplexer in conjunction with a high-<jats:italic>Q</jats:italic> racetrack microring resonator. The integrated devices are fabricated with one-step electron beam lithography and dry etching processes. The demonstrated two-mode (de)multiplexer boasts the excellent intermodal crosstalk below −20 dB and the on-chip insertion loss of less than 1.92 dB within the wavelength range of 1,514–1,580 nm. With the reinforcement of the microring resonator filter, the carrier signal can be suppressed thoroughly and the measured extinction ratio attains over 30 dB. Our proof-of-principle investigations have provided a feasible and compact solution to implement practical intermodal AOMs in LNOI for photonic and quantum information process, microwave photonics, and LiDAR.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"27 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0146","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high extinction ratio mode (de)multiplexer is a pivotal component in high capacity mode-division multiplexing data communication and nascent on-chip intermodal acousto-optic modulators. Up to now, high performance on-chip mode (de)multiplexers are still lacking for integrated AOMs on the lithium niobate-on-insulator platform. In this paper, we propose and demonstrate an innovative scheme to achieve high extinction ratio signal routing for acousto-optic modulation, by leveraging a two-mode (de)multiplexer in conjunction with a high-Q racetrack microring resonator. The integrated devices are fabricated with one-step electron beam lithography and dry etching processes. The demonstrated two-mode (de)multiplexer boasts the excellent intermodal crosstalk below −20 dB and the on-chip insertion loss of less than 1.92 dB within the wavelength range of 1,514–1,580 nm. With the reinforcement of the microring resonator filter, the carrier signal can be suppressed thoroughly and the measured extinction ratio attains over 30 dB. Our proof-of-principle investigations have provided a feasible and compact solution to implement practical intermodal AOMs in LNOI for photonic and quantum information process, microwave photonics, and LiDAR.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.