The auxin response factor OsARF12 modulates rice leaf angle via affecting shoot gravitropism.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fengjun Xian, Shuya Liu, Bin Xie, Jishuai Huang, Qiannan Zhang, Yimeng Xu, Xinrong Zhang, Chen Lv, Lin Zhu, Jun Hu
{"title":"The auxin response factor OsARF12 modulates rice leaf angle via affecting shoot gravitropism.","authors":"Fengjun Xian, Shuya Liu, Bin Xie, Jishuai Huang, Qiannan Zhang, Yimeng Xu, Xinrong Zhang, Chen Lv, Lin Zhu, Jun Hu","doi":"10.1016/j.jgg.2025.06.005","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf angle is a pivotal agronomic trait that significantly influences crop architecture and yield. Plant hormones, such as auxin, play a critical role in regulating leaf angle; however, the underlying molecular mechanisms remain to be fully elucidated. Here, we reveal that the auxin response factor gene, OsARF12, which is highly expressed in the leaf lamina joint, negatively regulates rice (Oryza sativa) leaf angle via affecting shoot gravitropism. Overexpression lines of OsARF12 exhibit more erect leaf angles, while the osarf12 mutants display enlarged leaf angles compared to the wild type. Further studies demonstrate that OsARF12 directly activates the expression of Loose Plant Architecture1 (LPA1) and LAZY1 by binding to their promoters. The osarf12 mutant presents impaired shoot gravitropism, a phenotype consistent with that of the lpa1 or lazy1 mutant. Collectively, we elucidate the biological functions of OsARF12, which modulates leaf angle through its impact on shoot gravitropism by regulating the expression levels of LPA1 and LAZY1. This study provides insight into the role of auxin in determining rice leaf angle, potentially holding profound effects for the optimization of crop architecture.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.06.005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leaf angle is a pivotal agronomic trait that significantly influences crop architecture and yield. Plant hormones, such as auxin, play a critical role in regulating leaf angle; however, the underlying molecular mechanisms remain to be fully elucidated. Here, we reveal that the auxin response factor gene, OsARF12, which is highly expressed in the leaf lamina joint, negatively regulates rice (Oryza sativa) leaf angle via affecting shoot gravitropism. Overexpression lines of OsARF12 exhibit more erect leaf angles, while the osarf12 mutants display enlarged leaf angles compared to the wild type. Further studies demonstrate that OsARF12 directly activates the expression of Loose Plant Architecture1 (LPA1) and LAZY1 by binding to their promoters. The osarf12 mutant presents impaired shoot gravitropism, a phenotype consistent with that of the lpa1 or lazy1 mutant. Collectively, we elucidate the biological functions of OsARF12, which modulates leaf angle through its impact on shoot gravitropism by regulating the expression levels of LPA1 and LAZY1. This study provides insight into the role of auxin in determining rice leaf angle, potentially holding profound effects for the optimization of crop architecture.

生长素响应因子OsARF12通过影响植株向地性调节水稻叶片角度。
叶角是影响作物结构和产量的关键农艺性状。植物激素,如生长素,在调节叶片角度中起关键作用;然而,潜在的分子机制仍有待充分阐明。本研究揭示了在叶片节骨处高表达的生长素反应因子基因OsARF12通过影响茎向地性负向调节水稻叶片角度。OsARF12过表达系的叶片角度更直立,而OsARF12突变体的叶片角度比野生型大。进一步研究表明,OsARF12通过与LPA1和LAZY1的启动子结合,直接激活它们的表达。osarf12突变体表现为茎向地性受损,这一表型与lpa1或lazy1突变体一致。综上所述,我们阐明了OsARF12的生物学功能,它通过调节LPA1和LAZY1的表达水平,通过对茎向地性的影响来调节叶片角度。该研究揭示了生长素在水稻叶片角度决定中的作用,可能对作物结构的优化具有深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信