Structural diversity and evolutionary constraints of oxidative phosphorylation.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-09-10 Epub Date: 2025-07-03 DOI:10.1016/j.xgen.2025.100945
José Luis Cabrera-Alarcón, Marina Rosa-Moreno, Lucía Sánchez-García, Pablo Hernansanz-Agustín, Maria Concepción Jiménez-Gómez, Fernando Martínez, Fátima Sánchez-Cabo, José Antonio Enríquez
{"title":"Structural diversity and evolutionary constraints of oxidative phosphorylation.","authors":"José Luis Cabrera-Alarcón, Marina Rosa-Moreno, Lucía Sánchez-García, Pablo Hernansanz-Agustín, Maria Concepción Jiménez-Gómez, Fernando Martínez, Fátima Sánchez-Cabo, José Antonio Enríquez","doi":"10.1016/j.xgen.2025.100945","DOIUrl":null,"url":null,"abstract":"<p><p>The oxidative phosphorylation (OxPhos) system is central to metabolism. The more than 90 structural subunits are encoded by different chromosome categories (autosomal, X, and mtDNA). The system is envisioned as an invariant structure between cells and individuals. However, a comprehensive analysis of the 1,000 Genomes Project data reveals unexpected genetic intra-individual variability resulting from the heterozygosity of diploid autosomal genes, while diversity at the population level is generated by variability in mtDNA. We characterized the different levels of structural constriction at evolutionary and population levels for all OxPhos protein residues. To support this analysis, we developed ConScore, a conservation-based predictor of variant impact within OxPhos proteins (area under the receiver operating characteristic curve [ROC-AUC] = 0.97; area under the precision-recall curve [PR-AUC] = 0.94). Notably, for the nuclear-encoded subunits, we found mechanisms limiting individual variability as allelic imbalance or homozygosity bias. Integrating structural, functional, and genetic data, we highlight the significance of each OxPhos protein position, expanding insights into its role in speciation and disease.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100945"},"PeriodicalIF":11.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The oxidative phosphorylation (OxPhos) system is central to metabolism. The more than 90 structural subunits are encoded by different chromosome categories (autosomal, X, and mtDNA). The system is envisioned as an invariant structure between cells and individuals. However, a comprehensive analysis of the 1,000 Genomes Project data reveals unexpected genetic intra-individual variability resulting from the heterozygosity of diploid autosomal genes, while diversity at the population level is generated by variability in mtDNA. We characterized the different levels of structural constriction at evolutionary and population levels for all OxPhos protein residues. To support this analysis, we developed ConScore, a conservation-based predictor of variant impact within OxPhos proteins (area under the receiver operating characteristic curve [ROC-AUC] = 0.97; area under the precision-recall curve [PR-AUC] = 0.94). Notably, for the nuclear-encoded subunits, we found mechanisms limiting individual variability as allelic imbalance or homozygosity bias. Integrating structural, functional, and genetic data, we highlight the significance of each OxPhos protein position, expanding insights into its role in speciation and disease.

氧化磷酸化的结构多样性和进化限制。
氧化磷酸化(OxPhos)系统是新陈代谢的核心。超过90个结构亚基由不同的染色体类别(常染色体、X染色体和mtDNA)编码。该系统被设想为细胞和个体之间的不变结构。然而,对1000个基因组计划数据的综合分析显示,二倍体常染色体基因的杂合性导致了意想不到的个体内遗传变异性,而群体水平的多样性是由mtDNA的变异性产生的。我们在进化和种群水平上表征了所有OxPhos蛋白残基的不同结构收缩水平。为了支持这一分析,我们开发了ConScore,一个基于保守的OxPhos蛋白变异影响预测器(受试者工作特征曲线下面积[ROC-AUC] = 0.97;精密度-召回率曲线下面积[PR-AUC] = 0.94)。值得注意的是,对于核编码亚基,我们发现了限制个体变异的机制,如等位基因失衡或纯合子偏倚。整合结构、功能和遗传数据,我们强调了每个OxPhos蛋白位置的重要性,扩展了对其在物种形成和疾病中的作用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信