Ehab A Abdelrahman, Mohamed N Goda, Abdalla M Khedr, Fawaz A Saad, Reem K Shah
{"title":"Thermal tuning of nanocomposites for superior cadmium ion adsorption.","authors":"Ehab A Abdelrahman, Mohamed N Goda, Abdalla M Khedr, Fawaz A Saad, Reem K Shah","doi":"10.1038/s41598-025-09274-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd(II)) ions are hazardous, non-biodegradable pollutants known for their bioaccumulative nature and severe risks to human health and aquatic ecosystems. This study presents the synthesis and application of a Co<sub>0.89</sub>Mg<sub>0.79</sub>Mn<sub>1.46</sub>O<sub>3.98</sub>@C nanocomposite, fabricated employing the Pechini sol-gel approach and subsequently calcinated at 600 <sup>o</sup>C (C600) and 800 <sup>o</sup>C (C800), for enhanced elimination of Cd(II) ions from aqueous environments. The C600 and C800 samples exhibited maximum uptake capacities of 280.11 mg/g and 206.19 mg/g, respectively. X-ray diffraction (XRD) analysis confirmed a cubic structure for both samples, with crystallite sizes of 51.66 nm (C600) and 87.09 nm (C800). Field emission scanning electron microscopy (FE-SEM) analysis clarified that C600 consisted of smaller, irregular grains, while C800 displayed larger, smoother particles. Elemental composition was verified by energy-dispersive X-ray spectroscopy (EDX), revealing elevated manganese and cobalt content in C800, attributed to enhanced incorporation at elevated temperatures. The superior adsorption performance of C600 was ascribed to its reduced crystallite size in addition to greatest surface area. Regeneration studies demonstrated excellent desorption efficiencies using 3 M HCl: 99.69% for C600 and 99.35% for C800, with both maintaining high removal efficiency over five adsorption-desorption cycles. Thermodynamic assessments indicated the process is exothermic, spontaneous, and dominated by physisorption. Kinetic modeling followed the pseudo-second-order model, while isotherm analysis fit the Langmuir-type isotherm, suggesting single-layer adsorption occurring uniformly across the adsorbent surface.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24003"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09274-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd(II)) ions are hazardous, non-biodegradable pollutants known for their bioaccumulative nature and severe risks to human health and aquatic ecosystems. This study presents the synthesis and application of a Co0.89Mg0.79Mn1.46O3.98@C nanocomposite, fabricated employing the Pechini sol-gel approach and subsequently calcinated at 600 oC (C600) and 800 oC (C800), for enhanced elimination of Cd(II) ions from aqueous environments. The C600 and C800 samples exhibited maximum uptake capacities of 280.11 mg/g and 206.19 mg/g, respectively. X-ray diffraction (XRD) analysis confirmed a cubic structure for both samples, with crystallite sizes of 51.66 nm (C600) and 87.09 nm (C800). Field emission scanning electron microscopy (FE-SEM) analysis clarified that C600 consisted of smaller, irregular grains, while C800 displayed larger, smoother particles. Elemental composition was verified by energy-dispersive X-ray spectroscopy (EDX), revealing elevated manganese and cobalt content in C800, attributed to enhanced incorporation at elevated temperatures. The superior adsorption performance of C600 was ascribed to its reduced crystallite size in addition to greatest surface area. Regeneration studies demonstrated excellent desorption efficiencies using 3 M HCl: 99.69% for C600 and 99.35% for C800, with both maintaining high removal efficiency over five adsorption-desorption cycles. Thermodynamic assessments indicated the process is exothermic, spontaneous, and dominated by physisorption. Kinetic modeling followed the pseudo-second-order model, while isotherm analysis fit the Langmuir-type isotherm, suggesting single-layer adsorption occurring uniformly across the adsorbent surface.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.