{"title":"The role of sodium pyruvate in mitigating the cytotoxic effects of vanadium on CHO-K1 cells.","authors":"Iwona Zwolak, Ewa Wnuk, Elżbieta Kochanowicz","doi":"10.1038/s41598-025-09606-7","DOIUrl":null,"url":null,"abstract":"<p><p>Vanadium is a hazardous, pro-oxidant element that contributes to environmental pollution and has been reported as a risk factor for human health through occupational or environmental exposure. Pyruvate, on the other hand, is a natural alpha-keto acid with exceptional antioxidant and cytoprotective properties. Therefore, the aim of this study was to evaluate the mitigating effect of exogenous pyruvate against vanadium-induced toxicity in cultured Chinese hamster ovary (CHO)-K1 cells. To this end, CHO-K1 cells were exposed to 100 μM vanadyl sulfate (VOSO<sub>4</sub>) for 24 h in the presence of 4.5 and 8 mM sodium pyruvate. Cell proliferation and morphological changes, cellular ATP levels, antioxidant stress (GSH) levels and apoptosis markers (caspase 3, 9, annexin V binding) were assessed to investigate the effect of sodium pyruvate on VOSO<sub>4</sub>-induced damage in CHO-K1 cells. The results showed that VOSO<sub>4</sub> induced morphological changes, inhibited cell proliferation, decreased cellular ATP and reduced glutathione levels. Co-treatment of VOSO<sub>4</sub>-intoxicated CHO-K1 cells with sodium pyruvate significantly reduced these cytotoxic effects. Analysis of apoptosis and necrosis showed that VOSO<sub>4</sub> slightly induced apoptosis and necrosis, and exogenous pyruvate inhibited the cytotoxicity of the tested vanadium dose in CHO-K1 cells, mainly by reducing the necrosis effect. The cytoprotective effect of exogenous pyruvate was also confirmed in normal mouse fibroblast (NIH/3T3) cells demonstrating that the protective properties of pyruvate are not cell specific.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"24006"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-09606-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium is a hazardous, pro-oxidant element that contributes to environmental pollution and has been reported as a risk factor for human health through occupational or environmental exposure. Pyruvate, on the other hand, is a natural alpha-keto acid with exceptional antioxidant and cytoprotective properties. Therefore, the aim of this study was to evaluate the mitigating effect of exogenous pyruvate against vanadium-induced toxicity in cultured Chinese hamster ovary (CHO)-K1 cells. To this end, CHO-K1 cells were exposed to 100 μM vanadyl sulfate (VOSO4) for 24 h in the presence of 4.5 and 8 mM sodium pyruvate. Cell proliferation and morphological changes, cellular ATP levels, antioxidant stress (GSH) levels and apoptosis markers (caspase 3, 9, annexin V binding) were assessed to investigate the effect of sodium pyruvate on VOSO4-induced damage in CHO-K1 cells. The results showed that VOSO4 induced morphological changes, inhibited cell proliferation, decreased cellular ATP and reduced glutathione levels. Co-treatment of VOSO4-intoxicated CHO-K1 cells with sodium pyruvate significantly reduced these cytotoxic effects. Analysis of apoptosis and necrosis showed that VOSO4 slightly induced apoptosis and necrosis, and exogenous pyruvate inhibited the cytotoxicity of the tested vanadium dose in CHO-K1 cells, mainly by reducing the necrosis effect. The cytoprotective effect of exogenous pyruvate was also confirmed in normal mouse fibroblast (NIH/3T3) cells demonstrating that the protective properties of pyruvate are not cell specific.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.