Leandro Di Gloria, Lorenzo Casbarra, Tommaso Lotti, Matteo Ramazzotti
{"title":"Testing the limits of short-reads metagenomic classifications programs in wastewater treating microbial communities.","authors":"Leandro Di Gloria, Lorenzo Casbarra, Tommaso Lotti, Matteo Ramazzotti","doi":"10.1038/s41598-025-07734-8","DOIUrl":null,"url":null,"abstract":"<p><p>Biological wastewater treatment processes, such as activated sludge (AS) and aerobic granular sludge (AGS), have proven to be crucial systems for achieving both efficient waste purification and the recovery of valuable resources like poly-hydroxy-alkanoates. Gaining a deeper understanding of the microbial communities underpinning these technologies would enable their optimization, ultimately reducing costs and increasing efficiency. To support this research, we quantitatively compared classification methods differing in read length (raw reads, contigs and MAGs), overall search approach (Kaiju, Kraken2, RiboFrame and kMetaShot), as well as source databases to assess the classification performances at both the genus and species levels using an in silico-generated mock community designed to provide a simplified yet comprehensive representation of the complex microbial ecosystems found in AS and AGS. Particular attention was given to the misclassification of eukaryotes as bacteria and vice versa, as well as the occurrence of false negatives. Notably, Kaiju emerged as the most accurate classifier at both the genus and species levels, followed by RiboFrame and kMetaShot. However, our findings highlight the substantial risk of misclassification across all classifiers and databases, which could significantly hinder the advancement of these technologies by introducing noises and mistakes for key microbial clades.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23997"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07734-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biological wastewater treatment processes, such as activated sludge (AS) and aerobic granular sludge (AGS), have proven to be crucial systems for achieving both efficient waste purification and the recovery of valuable resources like poly-hydroxy-alkanoates. Gaining a deeper understanding of the microbial communities underpinning these technologies would enable their optimization, ultimately reducing costs and increasing efficiency. To support this research, we quantitatively compared classification methods differing in read length (raw reads, contigs and MAGs), overall search approach (Kaiju, Kraken2, RiboFrame and kMetaShot), as well as source databases to assess the classification performances at both the genus and species levels using an in silico-generated mock community designed to provide a simplified yet comprehensive representation of the complex microbial ecosystems found in AS and AGS. Particular attention was given to the misclassification of eukaryotes as bacteria and vice versa, as well as the occurrence of false negatives. Notably, Kaiju emerged as the most accurate classifier at both the genus and species levels, followed by RiboFrame and kMetaShot. However, our findings highlight the substantial risk of misclassification across all classifiers and databases, which could significantly hinder the advancement of these technologies by introducing noises and mistakes for key microbial clades.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.