Beyond safety: suicide systems in cell-based cancer therapies.

IF 14.3 1区 医学 Q1 ONCOLOGY
Kok-Siong Chen, Khalid Shah
{"title":"Beyond safety: suicide systems in cell-based cancer therapies.","authors":"Kok-Siong Chen, Khalid Shah","doi":"10.1016/j.trecan.2025.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-based therapies are promising for treating solid tumors, but challenges like tumor heterogeneity, antigen escape, and immunosuppressive microenvironments hinder their efficacy. Inducible suicide gene systems, often viewed solely as safety mechanisms, offer an underappreciated opportunity to enhance cellular therapies. These systems, triggered by various mechanisms (prodrugs, ligands, antibodies, or small molecules), enable controlled elimination of therapeutic cells. Recent developments demonstrate that this controlled cell death, especially when inducing immunogenic cell death (ICD), can kill even resistant tumor cells and reshape the tumor microenvironment (TME) from suppressive to stimulatory. This review highlights the transformative potential of integrating these suicide systems into cell therapies, overcoming key limitations, and amplifying antitumor responses while ensuring safety.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.trecan.2025.06.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-based therapies are promising for treating solid tumors, but challenges like tumor heterogeneity, antigen escape, and immunosuppressive microenvironments hinder their efficacy. Inducible suicide gene systems, often viewed solely as safety mechanisms, offer an underappreciated opportunity to enhance cellular therapies. These systems, triggered by various mechanisms (prodrugs, ligands, antibodies, or small molecules), enable controlled elimination of therapeutic cells. Recent developments demonstrate that this controlled cell death, especially when inducing immunogenic cell death (ICD), can kill even resistant tumor cells and reshape the tumor microenvironment (TME) from suppressive to stimulatory. This review highlights the transformative potential of integrating these suicide systems into cell therapies, overcoming key limitations, and amplifying antitumor responses while ensuring safety.

超越安全:细胞癌症治疗中的自杀系统。
基于细胞的治疗方法有望治疗实体瘤,但肿瘤异质性、抗原逃逸和免疫抑制微环境等挑战阻碍了其疗效。诱导自杀基因系统,通常被视为安全机制,提供了一个被低估的机会,以加强细胞治疗。这些系统由各种机制(前药、配体、抗体或小分子)触发,能够控制治疗细胞的消除。最近的发展表明,这种受控的细胞死亡,特别是诱导免疫原性细胞死亡(ICD)时,甚至可以杀死耐药的肿瘤细胞,并将肿瘤微环境(TME)从抑制性重塑为刺激性。这篇综述强调了将这些自杀系统整合到细胞疗法中的变革潜力,克服了关键限制,并在确保安全性的同时增强了抗肿瘤反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in cancer
Trends in cancer Medicine-Oncology
CiteScore
28.50
自引率
0.50%
发文量
138
期刊介绍: Trends in Cancer, a part of the Trends review journals, delivers concise and engaging expert commentary on key research topics and cutting-edge advances in cancer discovery and medicine. Trends in Cancer serves as a unique platform for multidisciplinary information, fostering discussion and education for scientists, clinicians, policy makers, and patients & advocates.Covering various aspects, it presents opportunities, challenges, and impacts of basic, translational, and clinical findings, industry R&D, technology, innovation, ethics, and cancer policy and funding in an authoritative yet reader-friendly format.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信