Modeling common Alzheimer's disease with high and low polygenic risk in human iPSC: A large-scale research resource.

IF 5.9 2区 医学 Q1 CELL & TISSUE ENGINEERING
Emily Maguire, Jincy Winston, Sarah H Ellwood, Rachel O'Donoghue, Bethany Shaw, Atahualpa Castillo Morales, Samuel Keat, Alexandra Evans, Rachel Marshall, Lauren Luckcuck, Laura Brown, Elisa Salis, Ganna Leonenko, Nicola Denning, Nicholas D Allen, Valentina Escott-Price, Caleb Webber, Philip R Taylor, Rebecca Sims, Sally A Cowley, Julie Williams, Sarah M Carpanini, Hazel Hall-Roberts
{"title":"Modeling common Alzheimer's disease with high and low polygenic risk in human iPSC: A large-scale research resource.","authors":"Emily Maguire, Jincy Winston, Sarah H Ellwood, Rachel O'Donoghue, Bethany Shaw, Atahualpa Castillo Morales, Samuel Keat, Alexandra Evans, Rachel Marshall, Lauren Luckcuck, Laura Brown, Elisa Salis, Ganna Leonenko, Nicola Denning, Nicholas D Allen, Valentina Escott-Price, Caleb Webber, Philip R Taylor, Rebecca Sims, Sally A Cowley, Julie Williams, Sarah M Carpanini, Hazel Hall-Roberts","doi":"10.1016/j.stemcr.2025.102570","DOIUrl":null,"url":null,"abstract":"<p><p>Common forms of Alzheimer's disease (AD) are complex and polygenic. We have created a research resource that seeks to capture the extremes of polygenic risk in a collection of human induced pluripotent stem cell (iPSC) lines from over 100 donors: the IPMAR Resource (iPSC Platform to Model Alzheimer's Disease Risk). Donors were selected from a large UK cohort of 6,000+ research-diagnosed early or late-onset AD cases and elderly cognitively healthy controls, many of whom have lived through the age of risk for disease development (>85 years). We include iPSC with extremes of global AD polygenic risk (high-risk late-onset AD: 34; high-risk early-onset AD: 29; low-risk control: 27) as well as those reflecting complement pathway-specific genetic risk (high-risk AD: 9; low-risk controls: 10). All iPSC have associated clinical, longitudinal, and genetic datasets and will be available through collaboration or from cell (EBiSC) and data (DPUK) repositories.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102570"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2025.102570","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Common forms of Alzheimer's disease (AD) are complex and polygenic. We have created a research resource that seeks to capture the extremes of polygenic risk in a collection of human induced pluripotent stem cell (iPSC) lines from over 100 donors: the IPMAR Resource (iPSC Platform to Model Alzheimer's Disease Risk). Donors were selected from a large UK cohort of 6,000+ research-diagnosed early or late-onset AD cases and elderly cognitively healthy controls, many of whom have lived through the age of risk for disease development (>85 years). We include iPSC with extremes of global AD polygenic risk (high-risk late-onset AD: 34; high-risk early-onset AD: 29; low-risk control: 27) as well as those reflecting complement pathway-specific genetic risk (high-risk AD: 9; low-risk controls: 10). All iPSC have associated clinical, longitudinal, and genetic datasets and will be available through collaboration or from cell (EBiSC) and data (DPUK) repositories.

人类iPSC中高、低多基因风险的常见阿尔茨海默病建模:大规模研究资源。
阿尔茨海默病(AD)的常见形式是复杂和多基因的。我们已经创建了一个研究资源,旨在捕捉来自100多个捐赠者的人类诱导多能干细胞(iPSC)系的极端多基因风险:IPMAR资源(iPSC模型阿尔茨海默病风险平台)。捐赠者是从英国6000多名研究诊断的早发性或晚发性AD病例和老年认知健康对照者中挑选出来的,其中许多人已经度过了疾病发展的风险年龄(85岁左右)。我们纳入了全球AD多基因风险极端的iPSC(高风险晚发性AD: 34;高危早发性AD: 29;低风险对照:27),以及反映补体途径特异性遗传风险(高风险AD: 9;低风险控制:10)。所有iPSC都有相关的临床、纵向和遗传数据集,并将通过协作或从细胞(EBiSC)和数据(DPUK)存储库中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信