Georgia Lokka, Anna Chantzara, Zoi Lygerou, Stavros Taraviras
{"title":"Ependymal and neural stem cells are close relatives.","authors":"Georgia Lokka, Anna Chantzara, Zoi Lygerou, Stavros Taraviras","doi":"10.1016/j.stemcr.2025.102574","DOIUrl":null,"url":null,"abstract":"<p><p>Multiciliated ependymal and neural stem cells are key cell populations of the subventricular zone. Recent findings revealed that at least a subpopulation of radial glial cells during embryogenesis can be bipotent and produce both neural stem cells and ependymal cells. The balance between these cell populations is orchestrated by Geminin superfamily, ensuring optimal niche function. However, whether cell fate decisions are definitive or dynamic and whether potential regional differences exist remain elusive. In this review, we delve into the shared origins of different subventricular zone cell populations, and we explore the potential interplay among them. Moreover, we compile evidence on the de-differentiation capacity of ependymal cells and their controversial neural stem cell function under specific conditions, with emphasis on the possible implication of a rare population of biciliated (E2) ependymal cells. Understanding the mechanisms regulating cell fate decisions may unravel ependymal cells' therapeutic potential in therapies targeting various human diseases.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102574"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2025.102574","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Multiciliated ependymal and neural stem cells are key cell populations of the subventricular zone. Recent findings revealed that at least a subpopulation of radial glial cells during embryogenesis can be bipotent and produce both neural stem cells and ependymal cells. The balance between these cell populations is orchestrated by Geminin superfamily, ensuring optimal niche function. However, whether cell fate decisions are definitive or dynamic and whether potential regional differences exist remain elusive. In this review, we delve into the shared origins of different subventricular zone cell populations, and we explore the potential interplay among them. Moreover, we compile evidence on the de-differentiation capacity of ependymal cells and their controversial neural stem cell function under specific conditions, with emphasis on the possible implication of a rare population of biciliated (E2) ependymal cells. Understanding the mechanisms regulating cell fate decisions may unravel ependymal cells' therapeutic potential in therapies targeting various human diseases.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.