Alanoud Al Mazroa, Nuha Alruwais, Muhammad Kashif Saeed, Kamal M Othman, Randa Allafi, Ahmed S Salama
{"title":"Multi class aerial image classification in UAV networks employing Snake Optimization Algorithm with Deep Learning.","authors":"Alanoud Al Mazroa, Nuha Alruwais, Muhammad Kashif Saeed, Kamal M Othman, Randa Allafi, Ahmed S Salama","doi":"10.1038/s41598-025-04570-8","DOIUrl":null,"url":null,"abstract":"<p><p>In Unmanned Aerial Vehicle (UAV) networks, multi-class aerial image classification (AIC) is crucial in various applications, from environmental monitoring to infrastructure inspection. Deep Learning (DL), a powerful tool in artificial intelligence (AI), proves significant in this context, enabling the model to analyze and classify complex aerial images effectually. By utilizing advanced neural network architectures, such as convolutional neural networks (CNN), DL models outperform at identifying complex features and patterns within the aerial imagery. These models can extract spectral and spatial information from the captured data, classifying diverse terrains, structures, and objects precisely. Furthermore, the integration of Snake Optimization algorithms assists in fine-tuning the classification process, improving accuracy. As UAV networks continue to expand, DL-powered multi-class AIC significantly enhances the performance of surveillance, reconnaissance, and remote sensing tasks, contributing to the advancement of autonomous aerial systems. This study proposes a Snake Optimization Algorithm with Deep Learning for Multi-Class Aerial Image Classification (SOADL-MCAIC) methodology on UAV Networks. The main purpose of SOADL-MCAIC methodology is to recognize the presence of multiple classes of aerial images on the UAV networks. To accomplish this, the SOADL-MCAIC technique utilizes Gaussian filtering (GF) for pre-processing. In addition, the SOADL-MCAIC technique employs the Efficient DenseNet model to learn difficult and intrinsic features in the image. The SOA-based hyperparameter tuning process is used to enhance the performance of the Efficient DenseNet technique. Finally, the kernel extreme learning machine (KELM)-based classification algorithm is implemented to identify and classify the presence of various classes in aerial images. The simulation outcomes of the SOADL-MCAIC method are examined under the UCM land use dataset. The experimental analysis of the SOADL-MCAIC method portrayed a superior accuracy value of 99.75% over existing models.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23872"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-04570-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In Unmanned Aerial Vehicle (UAV) networks, multi-class aerial image classification (AIC) is crucial in various applications, from environmental monitoring to infrastructure inspection. Deep Learning (DL), a powerful tool in artificial intelligence (AI), proves significant in this context, enabling the model to analyze and classify complex aerial images effectually. By utilizing advanced neural network architectures, such as convolutional neural networks (CNN), DL models outperform at identifying complex features and patterns within the aerial imagery. These models can extract spectral and spatial information from the captured data, classifying diverse terrains, structures, and objects precisely. Furthermore, the integration of Snake Optimization algorithms assists in fine-tuning the classification process, improving accuracy. As UAV networks continue to expand, DL-powered multi-class AIC significantly enhances the performance of surveillance, reconnaissance, and remote sensing tasks, contributing to the advancement of autonomous aerial systems. This study proposes a Snake Optimization Algorithm with Deep Learning for Multi-Class Aerial Image Classification (SOADL-MCAIC) methodology on UAV Networks. The main purpose of SOADL-MCAIC methodology is to recognize the presence of multiple classes of aerial images on the UAV networks. To accomplish this, the SOADL-MCAIC technique utilizes Gaussian filtering (GF) for pre-processing. In addition, the SOADL-MCAIC technique employs the Efficient DenseNet model to learn difficult and intrinsic features in the image. The SOA-based hyperparameter tuning process is used to enhance the performance of the Efficient DenseNet technique. Finally, the kernel extreme learning machine (KELM)-based classification algorithm is implemented to identify and classify the presence of various classes in aerial images. The simulation outcomes of the SOADL-MCAIC method are examined under the UCM land use dataset. The experimental analysis of the SOADL-MCAIC method portrayed a superior accuracy value of 99.75% over existing models.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.