{"title":"Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis.","authors":"Yuxing Liu, Jintao Chen, Daifeng Yang, Chenming Liu, Chunhui Tang, Shanshan Cai, Yingxuan Huang","doi":"10.1038/s41598-025-10186-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed an immune-related long non-coding RNAs (lncRNAs)-based prognostic signature by integrating multi-omics data and machine learning algorithms to predict survival and therapeutic responses in breast cancer patients. Utilizing transcriptomic and gene expression data from TCGA and GEO databases, 72 immune-related lncRNAs were identified through weighted gene co-expression network analysis (WGCNA) and ImmuLncRNA algorithms. The model was further optimized using 101 combinations of 10 machine learning approaches, ultimately constructing an immune-related lncRNA signature(IRLS) scoring system comprising nine key lncRNAs. Validated across 17 independent cohorts, the model demonstrated that high-risk patients had significantly shorter overall survival (OS) (P < 0.05), with predictive performance surpassing 95 published models (P < 0.05). Additionally, the IRLS score predicted responses to paclitaxel chemotherapy, and the low-risk group exhibited higher immune cell infiltration (P < 0.05), showing significant negative correlations with CD8A, PD-L1, tumor mutational burden (TMB), and neoantigen load (NAL). In immune checkpoint inhibitor (ICI) treatment cohorts, low IRLS scores were associated with improved response rates to atezolizumab. Our findings suggest that the IRLS model serves as a novel biomarker for prognostic stratification and personalized therapeutic decision-making in breast cancer.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23863"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10186-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study developed an immune-related long non-coding RNAs (lncRNAs)-based prognostic signature by integrating multi-omics data and machine learning algorithms to predict survival and therapeutic responses in breast cancer patients. Utilizing transcriptomic and gene expression data from TCGA and GEO databases, 72 immune-related lncRNAs were identified through weighted gene co-expression network analysis (WGCNA) and ImmuLncRNA algorithms. The model was further optimized using 101 combinations of 10 machine learning approaches, ultimately constructing an immune-related lncRNA signature(IRLS) scoring system comprising nine key lncRNAs. Validated across 17 independent cohorts, the model demonstrated that high-risk patients had significantly shorter overall survival (OS) (P < 0.05), with predictive performance surpassing 95 published models (P < 0.05). Additionally, the IRLS score predicted responses to paclitaxel chemotherapy, and the low-risk group exhibited higher immune cell infiltration (P < 0.05), showing significant negative correlations with CD8A, PD-L1, tumor mutational burden (TMB), and neoantigen load (NAL). In immune checkpoint inhibitor (ICI) treatment cohorts, low IRLS scores were associated with improved response rates to atezolizumab. Our findings suggest that the IRLS model serves as a novel biomarker for prognostic stratification and personalized therapeutic decision-making in breast cancer.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.