Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuxing Liu, Jintao Chen, Daifeng Yang, Chenming Liu, Chunhui Tang, Shanshan Cai, Yingxuan Huang
{"title":"Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis.","authors":"Yuxing Liu, Jintao Chen, Daifeng Yang, Chenming Liu, Chunhui Tang, Shanshan Cai, Yingxuan Huang","doi":"10.1038/s41598-025-10186-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed an immune-related long non-coding RNAs (lncRNAs)-based prognostic signature by integrating multi-omics data and machine learning algorithms to predict survival and therapeutic responses in breast cancer patients. Utilizing transcriptomic and gene expression data from TCGA and GEO databases, 72 immune-related lncRNAs were identified through weighted gene co-expression network analysis (WGCNA) and ImmuLncRNA algorithms. The model was further optimized using 101 combinations of 10 machine learning approaches, ultimately constructing an immune-related lncRNA signature(IRLS) scoring system comprising nine key lncRNAs. Validated across 17 independent cohorts, the model demonstrated that high-risk patients had significantly shorter overall survival (OS) (P < 0.05), with predictive performance surpassing 95 published models (P < 0.05). Additionally, the IRLS score predicted responses to paclitaxel chemotherapy, and the low-risk group exhibited higher immune cell infiltration (P < 0.05), showing significant negative correlations with CD8A, PD-L1, tumor mutational burden (TMB), and neoantigen load (NAL). In immune checkpoint inhibitor (ICI) treatment cohorts, low IRLS scores were associated with improved response rates to atezolizumab. Our findings suggest that the IRLS model serves as a novel biomarker for prognostic stratification and personalized therapeutic decision-making in breast cancer.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"23863"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10186-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed an immune-related long non-coding RNAs (lncRNAs)-based prognostic signature by integrating multi-omics data and machine learning algorithms to predict survival and therapeutic responses in breast cancer patients. Utilizing transcriptomic and gene expression data from TCGA and GEO databases, 72 immune-related lncRNAs were identified through weighted gene co-expression network analysis (WGCNA) and ImmuLncRNA algorithms. The model was further optimized using 101 combinations of 10 machine learning approaches, ultimately constructing an immune-related lncRNA signature(IRLS) scoring system comprising nine key lncRNAs. Validated across 17 independent cohorts, the model demonstrated that high-risk patients had significantly shorter overall survival (OS) (P < 0.05), with predictive performance surpassing 95 published models (P < 0.05). Additionally, the IRLS score predicted responses to paclitaxel chemotherapy, and the low-risk group exhibited higher immune cell infiltration (P < 0.05), showing significant negative correlations with CD8A, PD-L1, tumor mutational burden (TMB), and neoantigen load (NAL). In immune checkpoint inhibitor (ICI) treatment cohorts, low IRLS scores were associated with improved response rates to atezolizumab. Our findings suggest that the IRLS model serves as a novel biomarker for prognostic stratification and personalized therapeutic decision-making in breast cancer.

机器学习结合多组学鉴定免疫相关LncRNA信号作为预测乳腺癌预后的生物标志物
本研究通过整合多组学数据和机器学习算法,开发了一种基于免疫相关长链非编码rna (lncRNAs)的预后标记,以预测乳腺癌患者的生存和治疗反应。利用TCGA和GEO数据库的转录组学和基因表达数据,通过加权基因共表达网络分析(WGCNA)和ImmuLncRNA算法鉴定出72个免疫相关的lncrna。使用10种机器学习方法的101种组合对模型进行进一步优化,最终构建了包含9个关键lncRNA的免疫相关lncRNA签名(IRLS)评分系统。经过17个独立队列的验证,该模型表明高危患者的总生存期(OS)明显缩短(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信