Regulation of the tagatose catabolic gene cluster and development of a tagatose-inducible expression system in the probiotic Escherichia coli Nissle 1917.
IF 4.9 2区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Keunha Park, Youngshin Kim, Dohyeon Kim, Su Min Oh, Tae Jeong Koo, Seung Min Yoo, Sung Ho Yoon
{"title":"Regulation of the tagatose catabolic gene cluster and development of a tagatose-inducible expression system in the probiotic Escherichia coli Nissle 1917.","authors":"Keunha Park, Youngshin Kim, Dohyeon Kim, Su Min Oh, Tae Jeong Koo, Seung Min Yoo, Sung Ho Yoon","doi":"10.1186/s12934-025-02771-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The probiotic Escherichia coli Nissle 1917 (EcN) is a promising microbial chassis for therapeutic and industrial applications. However, its broad utility is limited by a lack of reliable inducible gene expression systems that precisely control gene expression.</p><p><strong>Results: </strong>We developed a tagatose-inducible expression system in EcN using D-tagatose, a naturally occurring sugar with established safety in humans, as a metabolizable inducer. Through differential RNA sequencing and sequence analysis, we identified the key regulatory elements governing D-tagatose catabolism in EcN and demonstrated that the DeoR family regulator (TagR) functions as a tagatose-responsive repressor. The developed system exhibited a strong dose-dependent response to D-tagatose, ensuring uniform and tunable gene activation across cell populations. Additionally, a catabolite repression-enabled auto-induction strategy facilitated robust biomass accumulation, followed by targeted protein production. This expression system was successfully applied to overexpress recombinant proteins under both aerobic and anaerobic conditions.</p><p><strong>Conclusions: </strong>D-Tagatose is a naturally occurring low-calorie sugar that can serve as an inducer in vivo, including within the human gut microbiome. Thus, the tagatose-inducible expression system provides EcN with an additional tunable option for gene regulation, which may be valuable in applications such as synthetic biology and metabolic engineering.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"158"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02771-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The probiotic Escherichia coli Nissle 1917 (EcN) is a promising microbial chassis for therapeutic and industrial applications. However, its broad utility is limited by a lack of reliable inducible gene expression systems that precisely control gene expression.
Results: We developed a tagatose-inducible expression system in EcN using D-tagatose, a naturally occurring sugar with established safety in humans, as a metabolizable inducer. Through differential RNA sequencing and sequence analysis, we identified the key regulatory elements governing D-tagatose catabolism in EcN and demonstrated that the DeoR family regulator (TagR) functions as a tagatose-responsive repressor. The developed system exhibited a strong dose-dependent response to D-tagatose, ensuring uniform and tunable gene activation across cell populations. Additionally, a catabolite repression-enabled auto-induction strategy facilitated robust biomass accumulation, followed by targeted protein production. This expression system was successfully applied to overexpress recombinant proteins under both aerobic and anaerobic conditions.
Conclusions: D-Tagatose is a naturally occurring low-calorie sugar that can serve as an inducer in vivo, including within the human gut microbiome. Thus, the tagatose-inducible expression system provides EcN with an additional tunable option for gene regulation, which may be valuable in applications such as synthetic biology and metabolic engineering.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems