3BTRON: A Blood-Brain Barrier Recognition Network.

IF 5.1 1区 生物学 Q1 BIOLOGY
Nan Fletcher-Lloyd, Isabel Bravo-Ferrer, Katrine Gaasdal-Bech, Blanca Díaz Castro, Payam Barnaghi
{"title":"3BTRON: A Blood-Brain Barrier Recognition Network.","authors":"Nan Fletcher-Lloyd, Isabel Bravo-Ferrer, Katrine Gaasdal-Bech, Blanca Díaz Castro, Payam Barnaghi","doi":"10.1038/s42003-025-08453-6","DOIUrl":null,"url":null,"abstract":"<p><p>The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis. During ageing, the BBB undergoes structural alterations. Electron microscopy (EM) is the gold standard for studying the structural alterations of the brain vasculature. However, analysis of EM images is time-intensive and can be prone to selection bias, limiting our understanding of the structural effect of ageing on the BBB. Here, we introduce 3BTRON, a deep learning framework for the automated analysis of electron microscopy images of the BBB. Using age as a readout, we trained and validated our model on a unique dataset (n = 359). We show that the proposed model could confidently identify the BBB of aged mouse brains from young mouse brains across three different brain regions, achieving a sensitivity of 77.8% and specificity of 80.0% post-stratification when predicting on unseen data. Additionally, feature importance methods revealed the spatial features of each image that contributed most to the predictions. These findings demonstrate a new data-driven approach to analysing age-related changes in the architecture of the BBB.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"1001"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-08453-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis. During ageing, the BBB undergoes structural alterations. Electron microscopy (EM) is the gold standard for studying the structural alterations of the brain vasculature. However, analysis of EM images is time-intensive and can be prone to selection bias, limiting our understanding of the structural effect of ageing on the BBB. Here, we introduce 3BTRON, a deep learning framework for the automated analysis of electron microscopy images of the BBB. Using age as a readout, we trained and validated our model on a unique dataset (n = 359). We show that the proposed model could confidently identify the BBB of aged mouse brains from young mouse brains across three different brain regions, achieving a sensitivity of 77.8% and specificity of 80.0% post-stratification when predicting on unseen data. Additionally, feature importance methods revealed the spatial features of each image that contributed most to the predictions. These findings demonstrate a new data-driven approach to analysing age-related changes in the architecture of the BBB.

血脑屏障识别网络。
血脑屏障(BBB)在维持大脑稳态中起着至关重要的作用。在衰老过程中,血脑屏障发生结构改变。电子显微镜(EM)是研究脑血管结构变化的金标准。然而,EM图像的分析是耗时的,并且容易产生选择偏差,限制了我们对脑屏障老化的结构影响的理解。在这里,我们介绍3BTRON,一个用于脑屏障电子显微镜图像自动分析的深度学习框架。使用年龄作为读数,我们在一个独特的数据集(n = 359)上训练和验证了我们的模型。我们发现,该模型可以自信地从三个不同的大脑区域中识别老年小鼠大脑的血脑屏障,在预测未见数据时,分层后的灵敏度为77.8%,特异性为80.0%。此外,特征重要性方法揭示了对预测贡献最大的每张图像的空间特征。这些发现展示了一种新的数据驱动方法来分析脑屏障结构中与年龄相关的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信