Nonlinear squeezing flow of stratified fluids: A comprehensive study on convective conditions and probable errors

Q1 Chemical Engineering
Anum Shafiq , Tabassum Naz Sindhu , Muhammad Ahmad Iqbal , Tahani A. Abushal
{"title":"Nonlinear squeezing flow of stratified fluids: A comprehensive study on convective conditions and probable errors","authors":"Anum Shafiq ,&nbsp;Tabassum Naz Sindhu ,&nbsp;Muhammad Ahmad Iqbal ,&nbsp;Tahani A. Abushal","doi":"10.1016/j.ijft.2025.101290","DOIUrl":null,"url":null,"abstract":"<div><div>A thorough understanding of magnetohydrodynamic (MHD) squeezing fluid flow in non-Darcian media is essential for advancing a wide range of engineering applications, including cooling systems, polymer processing, and biomedical devices. This study investigates the dynamics of MHD squeezing flow over a stretching permeable plate, focusing on the combined effects of convection and nonlinear stratification on mass and heat transfer processes. The influence of thermal radiation is also considered to provide a comprehensive analysis of heat transfer mechanisms. The fourth-order Runge–Kutta method (RK-4), coupled with a shooting technique, is employed to numerically solve the system of nonlinear governing equations. The contribution of key variables to the flow field is studied and visualized through graphical representations. In addition, Sherwood number, Nusselt number, and skin friction coefficient are determined for various parameter values, with their statistical significance examined using correlation coefficients and probable error analysis. The results reveal that increasing solutal and thermal stratification parameters diminishes concentration and temperature fields, whereas higher Biot numbers enhance fluid concentration and temperature. Notably, all values are statistically significant except for length variable <span><math><mi>δ</mi></math></span> in the local Nusselt number.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"28 ","pages":"Article 101290"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266620272500237X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A thorough understanding of magnetohydrodynamic (MHD) squeezing fluid flow in non-Darcian media is essential for advancing a wide range of engineering applications, including cooling systems, polymer processing, and biomedical devices. This study investigates the dynamics of MHD squeezing flow over a stretching permeable plate, focusing on the combined effects of convection and nonlinear stratification on mass and heat transfer processes. The influence of thermal radiation is also considered to provide a comprehensive analysis of heat transfer mechanisms. The fourth-order Runge–Kutta method (RK-4), coupled with a shooting technique, is employed to numerically solve the system of nonlinear governing equations. The contribution of key variables to the flow field is studied and visualized through graphical representations. In addition, Sherwood number, Nusselt number, and skin friction coefficient are determined for various parameter values, with their statistical significance examined using correlation coefficients and probable error analysis. The results reveal that increasing solutal and thermal stratification parameters diminishes concentration and temperature fields, whereas higher Biot numbers enhance fluid concentration and temperature. Notably, all values are statistically significant except for length variable δ in the local Nusselt number.
分层流体的非线性挤压流动:对流条件和可能误差的综合研究
深入了解非darcian介质中的磁流体动力学(MHD)挤压流体流动对于推进广泛的工程应用至关重要,包括冷却系统,聚合物加工和生物医学设备。本文研究了MHD挤压流动在拉伸可渗透板上的动力学,重点研究了对流和非线性分层对质量和传热过程的综合影响。还考虑了热辐射的影响,以提供对传热机制的全面分析。采用四阶龙格-库塔法(RK-4),结合射击技术对非线性控制方程组进行数值求解。研究了关键变量对流场的贡献,并通过图形表示进行了可视化。对各参数值分别求出Sherwood数、Nusselt数和皮肤摩擦系数,并通过相关系数和可能误差分析检验其统计显著性。结果表明,增加的溶质和热分层参数会降低浓度和温度场,而增加的Biot数量会提高流体浓度和温度场。值得注意的是,除了局部努塞尔数的长度变量δ外,所有值都具有统计显著性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信