{"title":"Particle size and albedo effects on emissivity spectra of lunar analog minerals and rocks in the intermediate infrared region","authors":"Nandita Kumari , John Mustard , Timothy D. Glotch","doi":"10.1016/j.icarus.2025.116721","DOIUrl":null,"url":null,"abstract":"<div><div>Visible/near-infrared (VNIR) and thermal infrared (TIR) spectroscopy have been widely used to detect and characterize the abundances of silicates across the solar system. Recently, intermediate infrared (IMIR) reflectance spectroscopy (∼4 - 6 μm) has been proposed as a tool to quantify the Mg# in olivine and pyroxene with varying iron, magnesium and calcium content. The lunar surface is composed of rocks with mixed particle sizes and thus quantifying the effects of particle size is extremely important to increase the robustness of IMIR spectroscopy as a tool for lunar surface exploration. Similarly, space weathering has been known to cause optical darkening and affect the spectra of the lunar surface materials across a broad wavelength range. In this study, we have identified the emission features of lunar analog minerals/rocks and their variations with changes in particle sizes and albedo at IMIR wavelengths in simulated lunar environment (SLE). We find that the lunar analog minerals display an increase in emissivity and striking decrease in feature contrast with an increase in particle sizes or decrease in albedo. This study shows that while this wavelength range works well in reflectance space for sample characterization, using it for emissivity measurements via orbital remote sensing or in-situ rovers requires extensive study.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"441 ","pages":"Article 116721"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525002696","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Visible/near-infrared (VNIR) and thermal infrared (TIR) spectroscopy have been widely used to detect and characterize the abundances of silicates across the solar system. Recently, intermediate infrared (IMIR) reflectance spectroscopy (∼4 - 6 μm) has been proposed as a tool to quantify the Mg# in olivine and pyroxene with varying iron, magnesium and calcium content. The lunar surface is composed of rocks with mixed particle sizes and thus quantifying the effects of particle size is extremely important to increase the robustness of IMIR spectroscopy as a tool for lunar surface exploration. Similarly, space weathering has been known to cause optical darkening and affect the spectra of the lunar surface materials across a broad wavelength range. In this study, we have identified the emission features of lunar analog minerals/rocks and their variations with changes in particle sizes and albedo at IMIR wavelengths in simulated lunar environment (SLE). We find that the lunar analog minerals display an increase in emissivity and striking decrease in feature contrast with an increase in particle sizes or decrease in albedo. This study shows that while this wavelength range works well in reflectance space for sample characterization, using it for emissivity measurements via orbital remote sensing or in-situ rovers requires extensive study.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.