{"title":"Modification and optimization of spatial tooth profile for harmonic drive considering machining fillet feature in the hobbing process","authors":"Feifei Yuan, Ke Xiao, Linjun Li, Yanfeng Han, Cheng Wang, Guo Xiang, Xiujie Chen","doi":"10.1016/j.precisioneng.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the modification and optimization of spatial tooth profile for harmonic drive, especially considering machining fillet feature in the hobbing process. The work begins with an analysis of the spatial deformation of the flexspline and its motion trajectory, allowing for the determination of an envelope for the motion trajectory of flexspline teeth. Based on the hobbing process characteristics, we propose a modification calculation method by calculating the vertical distance at engagement points between this envelope and the circular spline teeth profile, the modification values that ensure non-interference engagement is obtained. Besides, the introduction of the machining fillet feature into the tooth profile design is explored, revealing its positive impact on the stress distribution of harmonic drive. A finite element model is utilized to assess the effectiveness of modification and optimization of spatial tooth profile for harmonic drive. Finite element simulation results demonstrate that the modification and optimization considering fillet feature proposed in this paper effectively redistributes contact stress towards the middle section of the teeth and improves stress concentration at the ends. This work provides a theoretical basis for the service life expanding and reliability improvement.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"96 ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925002132","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the modification and optimization of spatial tooth profile for harmonic drive, especially considering machining fillet feature in the hobbing process. The work begins with an analysis of the spatial deformation of the flexspline and its motion trajectory, allowing for the determination of an envelope for the motion trajectory of flexspline teeth. Based on the hobbing process characteristics, we propose a modification calculation method by calculating the vertical distance at engagement points between this envelope and the circular spline teeth profile, the modification values that ensure non-interference engagement is obtained. Besides, the introduction of the machining fillet feature into the tooth profile design is explored, revealing its positive impact on the stress distribution of harmonic drive. A finite element model is utilized to assess the effectiveness of modification and optimization of spatial tooth profile for harmonic drive. Finite element simulation results demonstrate that the modification and optimization considering fillet feature proposed in this paper effectively redistributes contact stress towards the middle section of the teeth and improves stress concentration at the ends. This work provides a theoretical basis for the service life expanding and reliability improvement.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.