Investigating Magnetic Field Fluctuations in Jovian Auroral Electron Beams

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
A. Salveter, J. Saur, G. Clark, A. Sulaiman, B. H. Mauk, J. E. P. Connerney, B. Bonfond
{"title":"Investigating Magnetic Field Fluctuations in Jovian Auroral Electron Beams","authors":"A. Salveter,&nbsp;J. Saur,&nbsp;G. Clark,&nbsp;A. Sulaiman,&nbsp;B. H. Mauk,&nbsp;J. E. P. Connerney,&nbsp;B. Bonfond","doi":"10.1029/2025JA033816","DOIUrl":null,"url":null,"abstract":"<p>The Juno spacecraft provides a unique opportunity to explore the mechanisms generating Jupiter's aurorae. Past analyses of Juno data immensely advanced our understanding of its auroral acceleration processes, however, few studies utilized multiple instruments on Juno in a joint systematic analysis. This study uses measurements from the Juno Ultraviolet Spectrograph (UVS), the Jupiter Energetic particle Detector Instrument (JEDI), and the Juno Magnetometer (MAG) from the first 20 perijoves. On magnetic field lines associated with the diffuse aurora, we consistently find small-scale magnetic field fluctuations with amplitudes of up to 100 nT on time scales of seconds to 1 min. On magnetic field lines directly linked to the main emission, the electron distribution is field-aligned, mostly broad-band in energy, and accompanied by large-scale magnetic field perturbations of several 100 nT on time scales of tens of min (except one case). These large-scale perturbations are generally associated with quasistatic field-aligned electric currents. Small-scale magnetic fields are not resolved over the main emission zone when the spacecraft is within four Jovian radii radial distance closer than radial distances four Jovian radii due to the digitization limit of the magnetometer. However, in all cases where Juno crosses the main auroral field lines beyond 4 R<sub>J</sub>, the digitization limit is significantly reduced and we detect small-scale magnetic field fluctuations of 2–10 nT consistent with a turbulent spectrum. Associated energy fluxes projected to Jupiter can exceed 1,000 mW/m2. The general broad-band nature of the electron distributions and the consistent presence of small-scale magnetic field fluctuations over the main emission support that wave-particle interaction can dominantly contribute to power Jupiter's auroral processes.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA033816","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JA033816","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Juno spacecraft provides a unique opportunity to explore the mechanisms generating Jupiter's aurorae. Past analyses of Juno data immensely advanced our understanding of its auroral acceleration processes, however, few studies utilized multiple instruments on Juno in a joint systematic analysis. This study uses measurements from the Juno Ultraviolet Spectrograph (UVS), the Jupiter Energetic particle Detector Instrument (JEDI), and the Juno Magnetometer (MAG) from the first 20 perijoves. On magnetic field lines associated with the diffuse aurora, we consistently find small-scale magnetic field fluctuations with amplitudes of up to 100 nT on time scales of seconds to 1 min. On magnetic field lines directly linked to the main emission, the electron distribution is field-aligned, mostly broad-band in energy, and accompanied by large-scale magnetic field perturbations of several 100 nT on time scales of tens of min (except one case). These large-scale perturbations are generally associated with quasistatic field-aligned electric currents. Small-scale magnetic fields are not resolved over the main emission zone when the spacecraft is within four Jovian radii radial distance closer than radial distances four Jovian radii due to the digitization limit of the magnetometer. However, in all cases where Juno crosses the main auroral field lines beyond 4 RJ, the digitization limit is significantly reduced and we detect small-scale magnetic field fluctuations of 2–10 nT consistent with a turbulent spectrum. Associated energy fluxes projected to Jupiter can exceed 1,000 mW/m2. The general broad-band nature of the electron distributions and the consistent presence of small-scale magnetic field fluctuations over the main emission support that wave-particle interaction can dominantly contribute to power Jupiter's auroral processes.

Abstract Image

研究木星极光电子束的磁场波动
朱诺号宇宙飞船提供了一个独特的机会来探索木星极光产生的机制。过去对朱诺号数据的分析极大地促进了我们对其极光加速过程的理解,然而,很少有研究利用朱诺号上的多种仪器进行联合系统分析。这项研究使用了朱诺紫外光谱仪(UVS)、木星高能粒子探测器(JEDI)和朱诺磁力计(MAG)对前20颗近日星的测量结果。在与漫射极光相关的磁力线上,我们一致发现在秒到1分钟的时间尺度上,振幅高达100 nT的小规模磁场波动。在与主发射直接相关的磁力线上,电子分布是场对准的,大部分是宽带能量,并伴随着在几十分钟的时间尺度上的几个100 nT的大规模磁场扰动(除了一种情况)。这些大规模的扰动通常与准静态场向电流有关。由于磁力计的数字化限制,当航天器在4个木星半径内径向距离小于4个木星半径时,主发射区内的小尺度磁场无法分辨。然而,在所有超过4 RJ的情况下,朱诺号穿越主极光场线时,数字化极限显著降低,我们检测到2-10 nT的小尺度磁场波动与湍流谱一致。预计到木星的相关能量通量可超过1,000兆瓦/平方米。电子分布的一般宽带性质和主要发射上持续存在的小规模磁场波动支持波粒相互作用可以主要贡献木星极光过程的动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信