Analysis of fractional viewpoints on the Jaulent–Miodek and Whitham–Broer–Kaup coupled equations

Q1 Mathematics
Sachit Kumar , Varun Joshi , Mamta Kapoor
{"title":"Analysis of fractional viewpoints on the Jaulent–Miodek and Whitham–Broer–Kaup coupled equations","authors":"Sachit Kumar ,&nbsp;Varun Joshi ,&nbsp;Mamta Kapoor","doi":"10.1016/j.padiff.2025.101243","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we use the Caputo fractional calculus to methodically examine the Coupled Jaulent–Miodek (CJM) fractional equation and the fractional Whitham–Broer–Kaup (WBK) system. The Sumudu residual power series approach and the Sumudu iteration transform method are used to analyze the nonlinear fractional differential equation systems, providing a comprehensive analytical analysis. The Sumudu iteration transform approach is used to achieve the fractional WBK system’s dynamics, as well as the Sumudu power series residual approach is utilized to investigate the CJM equation’s behavior for fractions. We thoroughly examine their interactions using known solutions, using both symbolic calculations and numerical simulations. This leads to the identification of new solutions and the clarification of the way in which certain systems of fractions behave in terms of the operator of Caputo. The outcomes demonstrate the efficacy of the strategies used to decipher the intricate dynamics of fractional nonlinear systems by demonstrating a strong convergence agreement between analytical and numerical solutions.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101243"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we use the Caputo fractional calculus to methodically examine the Coupled Jaulent–Miodek (CJM) fractional equation and the fractional Whitham–Broer–Kaup (WBK) system. The Sumudu residual power series approach and the Sumudu iteration transform method are used to analyze the nonlinear fractional differential equation systems, providing a comprehensive analytical analysis. The Sumudu iteration transform approach is used to achieve the fractional WBK system’s dynamics, as well as the Sumudu power series residual approach is utilized to investigate the CJM equation’s behavior for fractions. We thoroughly examine their interactions using known solutions, using both symbolic calculations and numerical simulations. This leads to the identification of new solutions and the clarification of the way in which certain systems of fractions behave in terms of the operator of Caputo. The outcomes demonstrate the efficacy of the strategies used to decipher the intricate dynamics of fractional nonlinear systems by demonstrating a strong convergence agreement between analytical and numerical solutions.
Jaulent-Miodek和Whitham-Broer-Kaup耦合方程的分数视点分析
在这项工作中,我们使用Caputo分数微积分系统地检查了耦合Jaulent-Miodek (CJM)分数方程和分数Whitham-Broer-Kaup (WBK)系统。采用Sumudu残差幂级数法和Sumudu迭代变换法对非线性分数阶微分方程系统进行了分析,提供了全面的分析方法。采用Sumudu迭代变换方法实现分数阶WBK系统的动力学,并利用Sumudu幂级数残差方法研究分数阶CJM方程的行为。我们使用已知的解决方案,使用符号计算和数值模拟,彻底检查它们的相互作用。这导致了新的解决方案的识别,并澄清了某些分数系统在卡普托算子方面的行为方式。结果表明,通过证明在解析解和数值解之间具有很强的收敛性,用于破译分数阶非线性系统的复杂动力学的策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信