Enhanced resistance of metal sequestering agents by reconfiguration of the Staphylococcus aureus cell wall.

Joy R Paterson, Joshua M Wadsworth, Rebecca J Lee, Ping Hu, Jacob Biboy, Daniela Vollmer, Waldemar Vollmer, Jon Marles-Wright, Jana N Radin, Thomas E Kehl-Fie, Mary T Moran, Gary J Sharples
{"title":"Enhanced resistance of metal sequestering agents by reconfiguration of the Staphylococcus aureus cell wall.","authors":"Joy R Paterson, Joshua M Wadsworth, Rebecca J Lee, Ping Hu, Jacob Biboy, Daniela Vollmer, Waldemar Vollmer, Jon Marles-Wright, Jana N Radin, Thomas E Kehl-Fie, Mary T Moran, Gary J Sharples","doi":"10.1038/s44259-025-00131-1","DOIUrl":null,"url":null,"abstract":"<p><p>Chelators possess antibacterial properties linked to metal sequestration, simulating the action of nutritional immunity in preventing infection. To gain further insight into bacterial adaptation to metal restriction, we isolated mutants of Staphylococcus aureus with enhanced resistance to two synthetic chelators with therapeutic potential. Mutations were identified that altered peptidoglycan metabolism and teichoic acid modification, crucially affecting PBP2 and eliminating FmtA or VraF functionality. The resulting strains showed increased cell wall thickness, modified cell surface charge and varied in susceptibility to cell wall-targeting agents. In those mutants lacking either FmtA or VraF, the modifications substantially increased cell surface-associated calcium, offering protection against loss of manganese that was preferentially targeted by both chelators. Our phenotypic and cellular metal analyses identify the cell envelope of S. aureus as a key target for metal sequestering molecules. Peptidoglycan and teichoic acids, in particular, serve as key repositories for a subset of metal ions that safeguard against deprivation and can be altered to augment resistance to antibacterial chelators.</p>","PeriodicalId":520007,"journal":{"name":"npj antimicrobials and resistance","volume":"3 1","pages":"61"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj antimicrobials and resistance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44259-025-00131-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chelators possess antibacterial properties linked to metal sequestration, simulating the action of nutritional immunity in preventing infection. To gain further insight into bacterial adaptation to metal restriction, we isolated mutants of Staphylococcus aureus with enhanced resistance to two synthetic chelators with therapeutic potential. Mutations were identified that altered peptidoglycan metabolism and teichoic acid modification, crucially affecting PBP2 and eliminating FmtA or VraF functionality. The resulting strains showed increased cell wall thickness, modified cell surface charge and varied in susceptibility to cell wall-targeting agents. In those mutants lacking either FmtA or VraF, the modifications substantially increased cell surface-associated calcium, offering protection against loss of manganese that was preferentially targeted by both chelators. Our phenotypic and cellular metal analyses identify the cell envelope of S. aureus as a key target for metal sequestering molecules. Peptidoglycan and teichoic acids, in particular, serve as key repositories for a subset of metal ions that safeguard against deprivation and can be altered to augment resistance to antibacterial chelators.

通过重组金黄色葡萄球菌细胞壁增强金属隔离剂的抗性。
螯合剂具有与金属隔离有关的抗菌特性,模拟营养免疫在预防感染中的作用。为了进一步了解细菌对金属限制的适应性,我们分离出对两种具有治疗潜力的合成螯合剂具有增强抗性的金黄色葡萄球菌突变体。研究发现,突变改变了肽聚糖代谢和壁壁酸修饰,关键影响了PBP2并消除了FmtA或VraF功能。结果显示,菌株细胞壁厚度增加,细胞表面电荷改变,对细胞壁靶向剂的敏感性不同。在那些缺乏FmtA或VraF的突变体中,修饰大大增加了细胞表面相关的钙,提供了防止锰损失的保护,锰是这两种螯合剂的优先目标。我们的表型和细胞金属分析确定了金黄色葡萄球菌的细胞包膜作为金属隔离分子的关键目标。尤其是肽聚糖和磷壁酸,它们是一类金属离子的关键储存库,可以防止被剥夺,并可以改变以增强对抗菌螯合剂的抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信