{"title":"Structure uncovered: understanding temporal variability in perceptual decision-making.","authors":"Anne E Urai","doi":"10.1016/j.tics.2025.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>Studies of perceptual decision-making typically present the same stimulus repeatedly over the course of an experimental session but ignore the order of these observations, assuming unrealistic stability of decision strategies over trials. However, even 'stable,' 'steady-state,' or 'expert' decision-making behavior features significant trial-to-trial variability that is richly structured in time. Structured trial-to-trial variability of various forms can be uncovered using latent variable models such as hidden Markov models and autoregressive models, revealing how unobservable internal states change over time. Capturing such temporal structure can avoid confounds in cognitive models, provide insights into inter- and intraindividual variability, and bridge the gap between neural and cognitive mechanisms of variability in perceptual decision-making.</p>","PeriodicalId":49417,"journal":{"name":"Trends in Cognitive Sciences","volume":" ","pages":""},"PeriodicalIF":16.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cognitive Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.tics.2025.06.003","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Studies of perceptual decision-making typically present the same stimulus repeatedly over the course of an experimental session but ignore the order of these observations, assuming unrealistic stability of decision strategies over trials. However, even 'stable,' 'steady-state,' or 'expert' decision-making behavior features significant trial-to-trial variability that is richly structured in time. Structured trial-to-trial variability of various forms can be uncovered using latent variable models such as hidden Markov models and autoregressive models, revealing how unobservable internal states change over time. Capturing such temporal structure can avoid confounds in cognitive models, provide insights into inter- and intraindividual variability, and bridge the gap between neural and cognitive mechanisms of variability in perceptual decision-making.
期刊介绍:
Essential reading for those working directly in the cognitive sciences or in related specialist areas, Trends in Cognitive Sciences provides an instant overview of current thinking for scientists, students and teachers who want to keep up with the latest developments in the cognitive sciences. The journal brings together research in psychology, artificial intelligence, linguistics, philosophy, computer science and neuroscience. Trends in Cognitive Sciences provides a platform for the interaction of these disciplines and the evolution of cognitive science as an independent field of study.