Eleonore Lebeuf-Taylor, Alexandria Cosby, Quinn Webber, Karl Cottenie
{"title":"Social structuring of the gut microbiome in communally roosting bats.","authors":"Eleonore Lebeuf-Taylor, Alexandria Cosby, Quinn Webber, Karl Cottenie","doi":"10.1371/journal.pone.0325710","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome is the community of microbes that inhabits the gastrointestinal tracts of animals. Laboratory findings have shown that the gut microbiome plays a crucial role in host metabolism, physiology, and immunity. This has led to speculation that selection acts on both host and microbiome-although identifying functionally essential coevolving microbes in wild animals remains challenging. A recent surge of studies in wild populations has identified phylogenetic, spatiotemporal, dietary, and social patterns in host-associated microbiomes. Here, we describe and assess the gut microbiomes of two sympatric bat species: big brown bats (Eptesicus fuscus) and little brown bats (Myotis lucifugus). Although these species share similar diets and environments throughout much of their North American ranges, we found they have distinct gut microbiomes. We find no evidence of a functional core microbiome among big brown bats and identify roost identity as a driver of microbiome composition, likely arising from social transmission among hosts through physical proximity. We conclude that both environmental and social factors drive microbiome composition in big brown bats and that repeated, extensive sampling is required to bring ecological reality to host-associated microbiome studies in wild populations.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 7","pages":"e0325710"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0325710","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The gut microbiome is the community of microbes that inhabits the gastrointestinal tracts of animals. Laboratory findings have shown that the gut microbiome plays a crucial role in host metabolism, physiology, and immunity. This has led to speculation that selection acts on both host and microbiome-although identifying functionally essential coevolving microbes in wild animals remains challenging. A recent surge of studies in wild populations has identified phylogenetic, spatiotemporal, dietary, and social patterns in host-associated microbiomes. Here, we describe and assess the gut microbiomes of two sympatric bat species: big brown bats (Eptesicus fuscus) and little brown bats (Myotis lucifugus). Although these species share similar diets and environments throughout much of their North American ranges, we found they have distinct gut microbiomes. We find no evidence of a functional core microbiome among big brown bats and identify roost identity as a driver of microbiome composition, likely arising from social transmission among hosts through physical proximity. We conclude that both environmental and social factors drive microbiome composition in big brown bats and that repeated, extensive sampling is required to bring ecological reality to host-associated microbiome studies in wild populations.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage