Topological layer Hall effect in two-dimensional type-I multiferroic heterostructure.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Wenhui Du, Kaiying Dou, Xinru Li, Ying Dai, Zeyan Wang, Baibiao Huang, Yandong Ma
{"title":"Topological layer Hall effect in two-dimensional type-I multiferroic heterostructure.","authors":"Wenhui Du, Kaiying Dou, Xinru Li, Ying Dai, Zeyan Wang, Baibiao Huang, Yandong Ma","doi":"10.1038/s41467-025-61514-6","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic skyrmion and layer physics have attracted considerable interest for their significance in fundamental research and practical device applications. Here, through symmetry and model analysis, we propose a mechanism for coupling magnetic skyrmion and layer physics in two-dimensional type-I multiferroic heterostructure, which generates the concept of topological layer Hall effect. Distinct from the existing layer Hall effects that are all driven by momentum-space Berry phase relied on fine-tuned bands, topological layer Hall effect correlates to the layer-polarized real-space Berry physics from noncoplanar spin textures of layer-locked magnetic skyrmion with nontrivial topology. Such layer-polarized real-space Berry physics acts as equivalent electromagnetic field and forces conduction electrons to transversely deflect to specific boundary of one given layer, yielding the anomalous Hall conductivity and thus topological layer Hall effect. Moreover, magnetoelectric coupling can enforce topological layer Hall effect being effectively controllable through ferroelectricity and magnetism. Using first-principles calculations and atomic spin model simulations, we also demonstrate this mechanism in two-dimensional multiferroic heterostructure of CrInSe<sub>3</sub>/In<sub>2</sub>S<sub>3</sub>/CrInSe<sub>3</sub>. Our study greatly enriches the researches on magnetic skyrmion and layer Hall effect.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6141"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61514-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic skyrmion and layer physics have attracted considerable interest for their significance in fundamental research and practical device applications. Here, through symmetry and model analysis, we propose a mechanism for coupling magnetic skyrmion and layer physics in two-dimensional type-I multiferroic heterostructure, which generates the concept of topological layer Hall effect. Distinct from the existing layer Hall effects that are all driven by momentum-space Berry phase relied on fine-tuned bands, topological layer Hall effect correlates to the layer-polarized real-space Berry physics from noncoplanar spin textures of layer-locked magnetic skyrmion with nontrivial topology. Such layer-polarized real-space Berry physics acts as equivalent electromagnetic field and forces conduction electrons to transversely deflect to specific boundary of one given layer, yielding the anomalous Hall conductivity and thus topological layer Hall effect. Moreover, magnetoelectric coupling can enforce topological layer Hall effect being effectively controllable through ferroelectricity and magnetism. Using first-principles calculations and atomic spin model simulations, we also demonstrate this mechanism in two-dimensional multiferroic heterostructure of CrInSe3/In2S3/CrInSe3. Our study greatly enriches the researches on magnetic skyrmion and layer Hall effect.

二维i型多铁异质结构的拓扑层霍尔效应。
磁性粒子和层物理因其在基础研究和实际器件应用中的重要意义而引起了人们的极大兴趣。本文通过对称性和模型分析,提出了二维i型多铁异质结构中磁激子与层物理耦合的机制,从而产生了拓扑层霍尔效应的概念。与现有的依赖于微调带的动量空间Berry相驱动的层霍尔效应不同,拓扑层霍尔效应与具有非平凡拓扑的层锁磁基子的非共面自旋织构的层极化实空间Berry物理相关。这种层极化实空间贝里物理作为等效电磁场,迫使导电电子横向偏转到某一给定层的特定边界,产生异常霍尔电导率,从而产生拓扑层霍尔效应。此外,磁电耦合可以通过铁电和磁性有效地控制拓扑层霍尔效应。利用第一性原理计算和原子自旋模型模拟,我们还在CrInSe3/In2S3/CrInSe3的二维多铁异质结构中证明了这一机制。我们的研究极大地丰富了磁激子和层霍尔效应的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信