Sono-activable and biocatalytic 3D-printed scaffolds for intelligently sequential therapies in osteosarcoma eradication and defect regeneration.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiao Rong, Sutong Xiao, Wei Geng, Bihui Zhu, Ping Mou, Zichuan Ding, Boqing Zhang, Yujiang Fan, Li Qiu, Chong Cheng
{"title":"Sono-activable and biocatalytic 3D-printed scaffolds for intelligently sequential therapies in osteosarcoma eradication and defect regeneration.","authors":"Xiao Rong, Sutong Xiao, Wei Geng, Bihui Zhu, Ping Mou, Zichuan Ding, Boqing Zhang, Yujiang Fan, Li Qiu, Chong Cheng","doi":"10.1038/s41467-025-61377-x","DOIUrl":null,"url":null,"abstract":"<p><p>To mitigate the necessity for multiple invasive procedures in treating malignant osteosarcoma, an innovative therapeutic approach is imperative to achieve controllable tumor-killing effects and subsequent bone repair. Here, we propose the de novo design of sono-activable and biocatalytic nanoparticles-modified 3D-printed hydroxyapatite (HA) scaffold (HS-ICTO) for intelligently sequential therapies in osteosarcoma eradication and bone defect regeneration. The engineered HS-ICTO scaffold displays superior, spatiotemporally controllable H<sub>2</sub>O<sub>2</sub>-catalytic performances, which promptly generate massive reactive oxygen species via multienzyme-like mechanisms coupled with sono-activation, thus augmenting tumor cell apoptosis. Furthermore, HS-ICTO can intelligently switch to catalyze H<sub>2</sub>O<sub>2</sub> to O<sub>2</sub> within the inflammatory bone defect microenvironment, effectively blocking endogenous H<sub>2</sub>O<sub>2</sub>-mediated oxidative stress, which positively modulates the osteogenic differentiation of stem cells and ultimately facilitates defect regeneration. We validate that this multifaceted HS-ICTO scaffold possesses robust and on-demand abilities to prevent neoplastic recurrence and promote anti-inflammatory osseous tissue repair, representing a promising platform for precision oncological intervention and regenerative medicine.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6150"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61377-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To mitigate the necessity for multiple invasive procedures in treating malignant osteosarcoma, an innovative therapeutic approach is imperative to achieve controllable tumor-killing effects and subsequent bone repair. Here, we propose the de novo design of sono-activable and biocatalytic nanoparticles-modified 3D-printed hydroxyapatite (HA) scaffold (HS-ICTO) for intelligently sequential therapies in osteosarcoma eradication and bone defect regeneration. The engineered HS-ICTO scaffold displays superior, spatiotemporally controllable H2O2-catalytic performances, which promptly generate massive reactive oxygen species via multienzyme-like mechanisms coupled with sono-activation, thus augmenting tumor cell apoptosis. Furthermore, HS-ICTO can intelligently switch to catalyze H2O2 to O2 within the inflammatory bone defect microenvironment, effectively blocking endogenous H2O2-mediated oxidative stress, which positively modulates the osteogenic differentiation of stem cells and ultimately facilitates defect regeneration. We validate that this multifaceted HS-ICTO scaffold possesses robust and on-demand abilities to prevent neoplastic recurrence and promote anti-inflammatory osseous tissue repair, representing a promising platform for precision oncological intervention and regenerative medicine.

超声激活和生物催化3d打印支架用于骨肉瘤根除和缺陷再生的智能顺序治疗。
为了减少恶性骨肉瘤治疗中多次侵入性手术的必要性,一种创新的治疗方法势在必行,以实现可控的肿瘤杀伤效果和随后的骨修复。在这里,我们提出了一种全新设计的超声激活和生物催化纳米颗粒修饰的3d打印羟基磷灰石(HA)支架(HS-ICTO),用于骨肉瘤根治和骨缺损再生的智能顺序治疗。设计的HS-ICTO支架显示出优越的、时空可控的h2o2催化性能,通过多酶样机制和声纳激活,迅速产生大量活性氧,从而增加肿瘤细胞的凋亡。此外,HS-ICTO能够在炎性骨缺损微环境中智能切换,催化H2O2转化为O2,有效阻断内源性H2O2介导的氧化应激,正向调节干细胞的成骨分化,最终促进缺损再生。我们验证了这种多面HS-ICTO支架具有强大的按需能力,可以防止肿瘤复发,促进抗炎骨组织修复,代表了精确肿瘤干预和再生医学的一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信