Scalable synthesis of NiFe-layered double hydroxide for efficient anion exchange membrane electrolysis.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alvaro Seijas-Da Silva, Adrian Hartert, Víctor Oestreicher, Jorge Romero, Camilo Jaramillo-Hernández, Luuk J J Muris, Grégoire Thorez, Bruno J C Vieira, Guillaume Ducourthial, Alice Fiocco, Sébastien Legendre, Cristián Huck-Iriart, Martín Mizrahi, Diego López-Alcalá, Anna T S Freiberg, Karl J J Mayrhofer, João C Waerenborgh, José J Baldoví, Serhiy Cherevko, Maria Varela, Simon Thiele, Vicent Lloret, Gonzalo Abellán
{"title":"Scalable synthesis of NiFe-layered double hydroxide for efficient anion exchange membrane electrolysis.","authors":"Alvaro Seijas-Da Silva, Adrian Hartert, Víctor Oestreicher, Jorge Romero, Camilo Jaramillo-Hernández, Luuk J J Muris, Grégoire Thorez, Bruno J C Vieira, Guillaume Ducourthial, Alice Fiocco, Sébastien Legendre, Cristián Huck-Iriart, Martín Mizrahi, Diego López-Alcalá, Anna T S Freiberg, Karl J J Mayrhofer, João C Waerenborgh, José J Baldoví, Serhiy Cherevko, Maria Varela, Simon Thiele, Vicent Lloret, Gonzalo Abellán","doi":"10.1038/s41467-025-61356-2","DOIUrl":null,"url":null,"abstract":"<p><p>The alkaline oxygen evolution reaction is a key step in producing green hydrogen through water electrolysis, but its large-scale industrial application remains limited due to challenges with current electrocatalysts-particularly in terms of scalability, efficiency, and long-term stability. Here we show an industrially scalable synthesis of an active NiFe layered double hydroxide (NiFe-LDH) catalyst using a room-temperature, atmospheric-pressure route. The process involves homogeneous alkalinization, where chloride ions nucleophilically attack an epoxide ring, producing a low-dimensional, defect-rich NiFe-LDH with pronounced iron clustering. In-situ spectroscopy and ab-initio calculations reveal that these structural features maximize the conversion of the NiFe-LDH to the catalytic active phase and minimize the energy barrier, improving catalytic efficiency. When used as the anode in an anion exchange membrane water electrolyzer operating at 70 °C, our material delivers 1 A cm⁻² at 1.69 V in a 5 cm<sup>2</sup> full-cell setup, with notable durability compared to conventional NiFe-LDHs. This scalable approach could considerably lower the cost of green hydrogen production by enabling more efficient alkaline electrolyzers.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6138"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61356-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The alkaline oxygen evolution reaction is a key step in producing green hydrogen through water electrolysis, but its large-scale industrial application remains limited due to challenges with current electrocatalysts-particularly in terms of scalability, efficiency, and long-term stability. Here we show an industrially scalable synthesis of an active NiFe layered double hydroxide (NiFe-LDH) catalyst using a room-temperature, atmospheric-pressure route. The process involves homogeneous alkalinization, where chloride ions nucleophilically attack an epoxide ring, producing a low-dimensional, defect-rich NiFe-LDH with pronounced iron clustering. In-situ spectroscopy and ab-initio calculations reveal that these structural features maximize the conversion of the NiFe-LDH to the catalytic active phase and minimize the energy barrier, improving catalytic efficiency. When used as the anode in an anion exchange membrane water electrolyzer operating at 70 °C, our material delivers 1 A cm⁻² at 1.69 V in a 5 cm2 full-cell setup, with notable durability compared to conventional NiFe-LDHs. This scalable approach could considerably lower the cost of green hydrogen production by enabling more efficient alkaline electrolyzers.

用于高效阴离子交换膜电解的nife层状双氢氧化物的可扩展合成。
碱性析氧反应是通过水电解生产绿色氢的关键步骤,但由于目前电催化剂的挑战,特别是在可扩展性、效率和长期稳定性方面,其大规模工业应用仍然受到限制。在这里,我们展示了一个工业上可扩展的合成活性NiFe层状双氢氧化物(NiFe- ldh)催化剂使用室温,常压路线。该工艺涉及均匀碱化,其中氯离子亲核攻击环氧化物环,产生低维,富含缺陷的NiFe-LDH,具有明显的铁簇。原位光谱和ab-initio计算表明,这些结构特征最大限度地提高了NiFe-LDH向催化活性相的转化,最小化了能量势垒,提高了催化效率。当在70°C的阴离子交换膜水电解槽中用作阳极时,我们的材料在5 cm2的全电池设置中提供1.69 V的1 cm⁻²,与传统的nfe - ldhs相比,具有显着的耐用性。这种可扩展的方法可以通过实现更高效的碱性电解槽,大大降低绿色制氢的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信