Impact-induced sublimation drives volatile depletion in carbonaceous meteorites.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zheng-Yu Long, Frederic Moynier, Tim F J Bögels, Linru Fang, Razvan Caracas, Marine Paquet, Fred Jourdan, Tu-Han Luu, Dimitri Rigoussen, Kun-Feng Qiu, Jun Deng, James M D Day
{"title":"Impact-induced sublimation drives volatile depletion in carbonaceous meteorites.","authors":"Zheng-Yu Long, Frederic Moynier, Tim F J Bögels, Linru Fang, Razvan Caracas, Marine Paquet, Fred Jourdan, Tu-Han Luu, Dimitri Rigoussen, Kun-Feng Qiu, Jun Deng, James M D Day","doi":"10.1038/s41467-025-61115-3","DOIUrl":null,"url":null,"abstract":"<p><p>Carbonaceous chondrites are amongst the most chemically primitive solid materials in the Solar System, yet many are depleted in moderately volatile elements. Here, we report enrichments in heavier zinc isotopes in heated carbonaceous chondrites compared to the typical ranges for chondritic meteorites. Our results indicate that impact-driven thermal metamorphism under low-pressure conditions led to partial sublimation of zinc. First-principles calculations support that zinc escapes from solids in the absence of melting, consistent with shock heating and rapid outgassing. The resulting solid residue is strongly enriched in heavier Zn isotopes with minimal recondensation. These findings link extreme isotopic signatures to collisional processing, revealing that asteroid-scale impacts can drive volatile loss from undifferentiated asteroids. These carbonaceous chondrites provide the first unequivocal evidence for purely kinetic Zn isotope fractionation during volatilization. Impact-induced volatilization drives volatile depletion in asteroidal parent bodies, with implications for the delivery and distribution of volatiles in early planetary systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"6146"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61115-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Carbonaceous chondrites are amongst the most chemically primitive solid materials in the Solar System, yet many are depleted in moderately volatile elements. Here, we report enrichments in heavier zinc isotopes in heated carbonaceous chondrites compared to the typical ranges for chondritic meteorites. Our results indicate that impact-driven thermal metamorphism under low-pressure conditions led to partial sublimation of zinc. First-principles calculations support that zinc escapes from solids in the absence of melting, consistent with shock heating and rapid outgassing. The resulting solid residue is strongly enriched in heavier Zn isotopes with minimal recondensation. These findings link extreme isotopic signatures to collisional processing, revealing that asteroid-scale impacts can drive volatile loss from undifferentiated asteroids. These carbonaceous chondrites provide the first unequivocal evidence for purely kinetic Zn isotope fractionation during volatilization. Impact-induced volatilization drives volatile depletion in asteroidal parent bodies, with implications for the delivery and distribution of volatiles in early planetary systems.

撞击引起的升华驱动碳质陨石的挥发性耗竭。
碳质球粒陨石是太阳系中化学性质最原始的固体物质之一,但其中许多已经耗尽了中等挥发性元素。在这里,我们报告了在加热的碳质球粒陨石中较重的锌同位素的富集,与球粒陨石的典型范围相比。我们的研究结果表明,在低压条件下,冲击驱动的热变质作用导致锌的部分升华。第一性原理计算支持锌在没有熔化的情况下从固体中逸出,与激波加热和快速放气一致。所得到的固体残渣强烈富集于较重的Zn同位素中,再缩聚最小。这些发现将极端同位素特征与碰撞过程联系起来,揭示了小行星尺度的撞击可以导致未分化小行星的挥发性损失。这些碳质球粒陨石为挥发过程中纯动力学Zn同位素分馏提供了第一个明确的证据。撞击引起的挥发驱动小行星母体中挥发物的耗竭,对早期行星系统中挥发物的输送和分布具有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信