EEG-Based Classification of Parkinson's Disease With Freezing of Gait Using Midfrontal Beta Oscillations.

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Shotabdi Roy, Joseph Nuamah, Taylor J Bosch, Richa Barsainya, Maximilian Scherer, Thomas Koeglsperger, K C Santosh, Arun Singh
{"title":"EEG-Based Classification of Parkinson's Disease With Freezing of Gait Using Midfrontal Beta Oscillations.","authors":"Shotabdi Roy, Joseph Nuamah, Taylor J Bosch, Richa Barsainya, Maximilian Scherer, Thomas Koeglsperger, K C Santosh, Arun Singh","doi":"10.31083/JIN39023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Freezing of gait (FOG) is a debilitating motor symptom of Parkinson's disease (PD) that significantly affects patient mobility and quality of life. Identifying reliable biomarkers to distinguish between PD patients with freezing of gait (PDFOG+) and those without FOG (PDFOG-) is essential for early intervention and treatment planning. This study investigates the potential of electroencephalographic (EEG) signals, focusing on well-studied midfrontal beta oscillatory feature, to classify PDFOG+ and PDFOG- using machine learning (ML) and deep learning (DL) approaches.</p><p><strong>Methods: </strong>Resting-state EEG data were collected from the midfrontal 'Cz' and nearby channels (Cz-cluster) from 41 PDFOG+ and 41 PDFOG- subjects. A range of ML and DL models, including logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost), categorical boosting (CatBoost), and long short-term memory (LSTM) models were evaluated using leave-one-subject-out (LOSO), 10-fold, and stratified cross-validation (CV).</p><p><strong>Results: </strong>Outcomes demonstrate that while LR achieved an area under the receiver-operating characteristic (AUC-ROC) score of 0.63, LSTM outperformed all models, achieving an AUC-ROC of 0.68 and accuracy of 0.63, particularly with the Cz-cluster configuration.</p><p><strong>Conclusions: </strong>These findings support the potential of midfrontal beta oscillations, particularly in combination with LSTM temporal modeling, a promising EEG-based biomarker for distinguishing PDFOG+ from PDFOG-. This work contributes to the development of more effective diagnostic tools and treatment strategies for PD-related gait impairments.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"24 6","pages":"39023"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/JIN39023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Freezing of gait (FOG) is a debilitating motor symptom of Parkinson's disease (PD) that significantly affects patient mobility and quality of life. Identifying reliable biomarkers to distinguish between PD patients with freezing of gait (PDFOG+) and those without FOG (PDFOG-) is essential for early intervention and treatment planning. This study investigates the potential of electroencephalographic (EEG) signals, focusing on well-studied midfrontal beta oscillatory feature, to classify PDFOG+ and PDFOG- using machine learning (ML) and deep learning (DL) approaches.

Methods: Resting-state EEG data were collected from the midfrontal 'Cz' and nearby channels (Cz-cluster) from 41 PDFOG+ and 41 PDFOG- subjects. A range of ML and DL models, including logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost), categorical boosting (CatBoost), and long short-term memory (LSTM) models were evaluated using leave-one-subject-out (LOSO), 10-fold, and stratified cross-validation (CV).

Results: Outcomes demonstrate that while LR achieved an area under the receiver-operating characteristic (AUC-ROC) score of 0.63, LSTM outperformed all models, achieving an AUC-ROC of 0.68 and accuracy of 0.63, particularly with the Cz-cluster configuration.

Conclusions: These findings support the potential of midfrontal beta oscillations, particularly in combination with LSTM temporal modeling, a promising EEG-based biomarker for distinguishing PDFOG+ from PDFOG-. This work contributes to the development of more effective diagnostic tools and treatment strategies for PD-related gait impairments.

基于脑电图的帕金森病分类与中额叶β振荡冻结步态。
背景:步态冻结(FOG)是帕金森病(PD)的一种使人衰弱的运动症状,严重影响患者的活动能力和生活质量。确定可靠的生物标志物来区分PD患者步态冻结(PDFOG+)和无FOG (PDFOG-)是早期干预和治疗计划的必要条件。本研究利用机器学习(ML)和深度学习(DL)方法研究脑电图(EEG)信号的潜力,重点关注已经得到充分研究的额叶中部β振荡特征,对PDFOG+和PDFOG-进行分类。方法:采集41例PDFOG+和41例PDFOG-受试者中额叶“Cz”及其附近通道(Cz簇)静息状态脑电数据。一系列ML和DL模型,包括逻辑回归(LR)、随机森林(RF)、极端梯度增强(XGBoost)、分类增强(CatBoost)和长短期记忆(LSTM)模型,使用丢下一个被试(LOSO)、10倍和分层交叉验证(CV)进行评估。结果:结果表明,虽然LR在接收者操作特征(AUC-ROC)得分下的面积为0.63,但LSTM优于所有模型,实现了0.68的AUC-ROC和0.63的准确率,特别是在cz集群配置下。结论:这些发现支持了中额叶β振荡的潜力,特别是与LSTM时间模型相结合,LSTM时间模型是一种基于脑电图的生物标志物,可以区分PDFOG+和PDFOG-。这项工作有助于开发更有效的pd相关步态障碍诊断工具和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信