Danielle L Hopkins, Madeline L Weaver, Connie Sosnoff, Rayaj Ahamed, Lanqing Wang, Tiffany H Seyler
{"title":"A New Automated Method for the Analysis of Cotinine and trans-3'-Hydroxycotinine in Serum by LC/MS/MS.","authors":"Danielle L Hopkins, Madeline L Weaver, Connie Sosnoff, Rayaj Ahamed, Lanqing Wang, Tiffany H Seyler","doi":"10.1093/jat/bkaf059","DOIUrl":null,"url":null,"abstract":"<p><p>Tobacco cigarette smoking is the leading cause of preventable diseases and death in the US. Exposure to secondhand smoke (SHS) can also cause heart disease, lung cancer, and respiratory illness. Cotinine (COT) and trans-3'-hydroxycotinine (HCT) are the primary metabolites of nicotine, the main addictive alkaloid in tobacco products. For many years, we have measured serum levels of COT and HCT in National Health and Nutritional Examination Survey (NHANES) participants to monitor exposure of the U.S. population to active smoking and SHS. As exposure to SHS is decreasing, a more sensitive analytical method is needed to detect the lower levels of these biomarkers for SHS assessment. We developed and validated a new automated method for the detection of COT and HCT in human serum. We implemented a new liquid handling automation system to aliquot and prepare samples using supported liquid extraction. Samples were analyzed by liquid chromatography-tandem mass spectrometry. The new automated sample preparation method increases sample throughput by reducing sample cleanup time to 2 hours for preparing a 96-well plate. The method has excellent sensitivity, specificity, precision (<10%), and accuracy (±15%). We were able to lower the estimated limit of detection (LOD) for COT by 33% and HCT by 73% from our previous LOD. The new LODs for COT and HCT are 0.010 ng/mL and 0.004 ng/mL, respectively. These lower LODs would enable better detection of SHS in future NHANES surveys.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkaf059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tobacco cigarette smoking is the leading cause of preventable diseases and death in the US. Exposure to secondhand smoke (SHS) can also cause heart disease, lung cancer, and respiratory illness. Cotinine (COT) and trans-3'-hydroxycotinine (HCT) are the primary metabolites of nicotine, the main addictive alkaloid in tobacco products. For many years, we have measured serum levels of COT and HCT in National Health and Nutritional Examination Survey (NHANES) participants to monitor exposure of the U.S. population to active smoking and SHS. As exposure to SHS is decreasing, a more sensitive analytical method is needed to detect the lower levels of these biomarkers for SHS assessment. We developed and validated a new automated method for the detection of COT and HCT in human serum. We implemented a new liquid handling automation system to aliquot and prepare samples using supported liquid extraction. Samples were analyzed by liquid chromatography-tandem mass spectrometry. The new automated sample preparation method increases sample throughput by reducing sample cleanup time to 2 hours for preparing a 96-well plate. The method has excellent sensitivity, specificity, precision (<10%), and accuracy (±15%). We were able to lower the estimated limit of detection (LOD) for COT by 33% and HCT by 73% from our previous LOD. The new LODs for COT and HCT are 0.010 ng/mL and 0.004 ng/mL, respectively. These lower LODs would enable better detection of SHS in future NHANES surveys.
期刊介绍:
The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation.
Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.