Sajjad Bahman, Safar Farajnia, Effat Alizadeh, Farzin Seirafi, Hojjatollah Nozad Charoudeh, Mohammad Kazem Hosseini
{"title":"Diagnostic potential of new linear epitopes derived from the N-terminal domain of the SARS-CoV-2 Glycoprotein S.","authors":"Sajjad Bahman, Safar Farajnia, Effat Alizadeh, Farzin Seirafi, Hojjatollah Nozad Charoudeh, Mohammad Kazem Hosseini","doi":"10.18502/ijm.v17i3.18831","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>The aim of this study was to assess the effectiveness of a new linear epitope from the N-terminal domain (NTD) of the SARS-CoV-2 S protein in the diagnosis of COVID-19.</p><p><strong>Materials and methods: </strong>Serum samples from patients were confirmed to have COVID-19 by means of RT-PCR. The linear epitope sequence of the NTD was amplified by RT-PCR, inserted into an expression vector, and produced in <i>Escherichi coli</i> (DE3) pLysS. Subsequently, the recombinant proteins were purified and refolded. The interaction between the purified protein and the antibodies in COVID-19 patient sera was evaluated using ELISA.</p><p><strong>Results: </strong>Sequencing verified that the N-terminal linear epitope was successfully cloned into the PET-22b vector with a 6His-tag at the C-terminal end. The presence of a 25 kDa band on SDS-PAGE indicated the successful purification of the recombinant protein using Ni-NTA chromatography. The results of ELISA showed that the NTD linear epitope had strong sensitivity (88%) and specificity (96%) for identifying viral infection in COVID-19 patients' blood samples.</p><p><strong>Conclusion: </strong>The findings of this study demonstrated that the NTD linear epitopes of the SARS-CoV-2 spike protein exhibit significant sensitivity and specificity for the diagnosis of COVID-19 infection using serological techniques. However, further evaluations involving larger sample sizes across diverse ethnic populations is essential.</p>","PeriodicalId":14633,"journal":{"name":"Iranian Journal of Microbiology","volume":"17 3","pages":"480-487"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijm.v17i3.18831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: The aim of this study was to assess the effectiveness of a new linear epitope from the N-terminal domain (NTD) of the SARS-CoV-2 S protein in the diagnosis of COVID-19.
Materials and methods: Serum samples from patients were confirmed to have COVID-19 by means of RT-PCR. The linear epitope sequence of the NTD was amplified by RT-PCR, inserted into an expression vector, and produced in Escherichi coli (DE3) pLysS. Subsequently, the recombinant proteins were purified and refolded. The interaction between the purified protein and the antibodies in COVID-19 patient sera was evaluated using ELISA.
Results: Sequencing verified that the N-terminal linear epitope was successfully cloned into the PET-22b vector with a 6His-tag at the C-terminal end. The presence of a 25 kDa band on SDS-PAGE indicated the successful purification of the recombinant protein using Ni-NTA chromatography. The results of ELISA showed that the NTD linear epitope had strong sensitivity (88%) and specificity (96%) for identifying viral infection in COVID-19 patients' blood samples.
Conclusion: The findings of this study demonstrated that the NTD linear epitopes of the SARS-CoV-2 spike protein exhibit significant sensitivity and specificity for the diagnosis of COVID-19 infection using serological techniques. However, further evaluations involving larger sample sizes across diverse ethnic populations is essential.
期刊介绍:
The Iranian Journal of Microbiology (IJM) is an international, multi-disciplinary, peer-reviewed journal that provides rapid publication of the most advanced scientific research in the areas of basic and applied research on bacteria and other micro-organisms, including bacteria, viruses, yeasts, fungi, microalgae, and protozoa concerning the development of tools for diagnosis and disease control, epidemiology, antimicrobial agents, clinical microbiology, immunology, Genetics, Genomics and Molecular Biology. Contributions may be in the form of original research papers, review articles, short communications, case reports, technical reports, and letters to the Editor. Research findings must be novel and the original data must be available for review by the Editors, if necessary. Studies that are preliminary, of weak originality or merely descriptive as well as negative results are not appropriate for the journal. Papers considered for publication must be unpublished work (except in an abstract form) that is not under consideration for publication anywhere else, and all co-authors should have agreed to the submission. Manuscripts should be written in English.